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Abstract

In this paper we apply the method of complexity regularization to de­
rive estimation bounds for nonlinear function estimation using a single
hidden layer radial basis function network. Our approach differs from
the previous complexity regularization neural network function learning
schemes in that we operate with random covering numbers and 11 metric
entropy, making it po~sibleto consider much broader families of activa­
tion functions, namely functions of bounded variation. Some constraints
previously imposed on the network parameters are also eliminated this
way. The network is trained by means of complexity regularization in­
volving empirical risk minimization. Bounds on the expected risk in
tenns of the sample size are obtained for a large class of loss functions.
Rates of convergence to the optimal loss are also derived.

1 INTRODUCTION

Artificial neural networks have been found effective in learning input-outputmappings from
noisy examples. In this learning problem an unknown target function is to be inferred from a
set of independent observations drawn according to some unknown probability distribution
from the input-output space JRd x JR. Using this data set the learner tries to determine a
function which fits the data in the sense of minimizing some given empirical loss function.
The target function mayor may not be in the class of functions which are realizable by the
learner. In the case when the class of realizable functions consists of some class of artificial
neural networks, the above problem has been extensively studied from different viewpoints.

In recent years a special class of artificial neural networks, the radial basis function (RBF)
networks have received considerable attention. RBF networks have been shown to be
the solution of the regularization problem in function estimation with certain standard
smoothness functionals used as stabilizers (see [5], and the references therein). Universal
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convergence of RBF nets in function estimation and classification has been proven by
Krzyzak et at. [6]. Convergence rates of RBF approximation schemes have been shown to
be comparable with those for sigmoidal nets by Girosi and Anzellotti [4]. In a recent paper
Niyogi and Girosi [9] studied the tradeoff between approximation and estimation errors and
provided an extensive review of the problem.

In this paper we consider one hidden layer RBF networks. We look at the problem of
choosing the size of the hidden layer as a function of the available training data by means
of complexity regularization. Complexity regularization approach has been applied to
model selection by Barron [1], [2] resulting in near optimal choice of sigmoidal network
parameters. Our approach here differs from Barron's in that we are using II metric en­
tropy instead of the supremum norm. This allows us to consider amore general class
of activation function, namely the functions of bounded variation, rather than a restricted
class of activation functions satisfying a Lipschitz condition. For example, activations with
jump discontinuities are allowed. In our complexity regularization approach we are able
to choose the network parameters more freely, and no discretization of these parameters is
required. For RBF regression estimation with squared error loss, we considerably improve
the convergence rate result obtained by Niyogi and Girosi [9].

In Section 2 the problem is formulated and two results on the estimation error of complexity
regularized RBF nets are presented: one for general loss functions (Theorem 1) and a
sharpened version of the first one for the squared loss (Theorem 2). Approximation bounds
are combined with the obtained estimation results in Section 3 yielding convergence rates
for function learning with RBF nets.

2 PROBLEM FORMULATION

The task is to predict the value of a real random variable Y upon the observation of an lRd

valued random vector X. The accuracy of the predictor f : lRd
--+ R is measured by the

expected risk
J(/) = EL(f(X), Y),

where L : lR x lR --+ lR+ is a nonnegative loss function. It will be assumed that there exists
a minimizing predictor f* such that

J(!*) == inf J(/).
J

A good predictor f n is to be detennined based on the data (Xl, Y]), · .. , (Xn , Yn ) which
are i.i.d. copies of (X, Y). The goal is to make the expected risk EJ(fn) as small as
possible, while fn is chosen from among a given class :F of candidate functions.

In this paper the set of candidate functions :F will be the set of single-layer feedforward
neural networks with radial basis function activation units and we let:F == Uk=l:Fk, where
:Fk is the family of networks with k hidden nodes whose weight parameters satisfy certain
constraints. In particular, for radial basis functions characterized by a kernel K : lR+ --+ JR.,
:Fk is the family of networks

k

I(x) = LWiK([x-Ci]tAi[X-Ci)) +wo,
i=l

where Wo, WI ..• , Wlc are real numbers called weights, CI, .•• ,Ck E R d
, Ai are nonnegative'

definite d x d matrices, and x t denotes the transpose of the column vector x. _

The complexity regularization principle for the learning problem was introduced by Vapnik
[10] and fully developed by Barron [1], [2] (see also Lugosi and Zeger [8]). It enables
the learning algorithm to choose the candidate class :Fk automatically, fro~ which is picks
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the estimate function by minimizing the empirical error over the training data. Complexity
regularization penalizes the large candidate classes, which are bound to have small approx­
imation error, in favor of the smaller ones, thus balancing the estimation and approximation
errors.

Let :F be a subset of a space X of real functions over some set, and let p be a pseudometric
on X. For f > 0 the covering number N (f, :F, p) is defined to be the minimal number of
closed f balls whose union cover :F. In other words, N (f, :F, p) is the least integer such
that there exist 11, ... ,IN with N = N(f.,:F, p) satisfying

sup ~n p(/, fi) S: f.
IEF l~I~N

In our case, :F is a family of real functions on lRm
, and for any two functions I and g, p is

given by

~hereZl, ... , Zn aren givenpointsinlRm
• In this casewe will use the notation N(f,:F, p) ==

N (f, :F, zl)' emphasizing the dependence of the metric p on zl == (Zl' ... , zn). Let us
define the families of functions 1-£k, k = 1, 2, ... by

1-lIc == {L(f(·), .) : I E :FIc}.

Thus each member of1-£k maps lRd+
1 intoR. It will be assumed that for each k we are given

a finite, almost sure uniform upper bound on the random covering numbers N( f, 1-£k, Zr),
where Zj == «Xl, Yl), ... , (Xn , Yn )). We may assume without loss of generality that
N(E,1ik) is monotone decreasing in E. Finally, assume that L(f(X), Y) is uniformly
almost surely bounded by a constant B, Le.,

P{L(/(X), Y) ~ B} == 1, f E :FIc, k == 1,2, ... (1)

The complexity penalty of the kth class for n training samples is a nonnegative number ~kn
satisfying

Akn ~ lZ8B2 1og N(Akn/8,1lk) + Ck ,

n
(2)

(3)

where the nonnegative constants Ck satisfy Er=l e- Ck
' :s 1. Note that since N(f, 1-£k) is

nonincreasing in f, it is possible to choose such~kn for all k and n. The resulting complexity
penalty optimizes the upper bound on the estimation error in the proofofTheorem 1 below.
We can now define our estimate. Let

that is, fkn minimizes over rk the empirical risk for n training samples. The penalized
empirical risk is defined for each f E rIc as

The estimate f n is then defined as the fkn minimizing the penalized empirical risk over all
classes:

!~ == argminJn(!kn).
lkn:k?;.l

We have the following theorem for the expected estimation error of the above complexity
regularization scheme.
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Theorem 1 For any nand k the complexity regularization estimate (3) satisfies

EJ(/n) - J(/*) ~ min (Rkn + inf J(f) - J(f*)) ,
k~l . JE:Fk

where

(4)~kn ==

Assuming without loss of generality that log N (f., 1-lk) ~ 1, it is easy to see that the choice

128B21ogN(B/vnl1it.:) +(:;:
n

satisfies (2).

2.1 SQUARED ERROR LOSS

For the 'special case when
L(x, y) == (x _ y)2

we can obtain a better upper bound. The estimate will be the same as before, but instead of
(2), the complexity penalty Akn now has to satisfy

A 0 log N(Akn /C2 , :Fk) + Ck (5)
o.kn 2:: 1 ,

n
where 01 == 349904, C2 == 25603, and 0 == max{B, I}. Here N (f. , :Fk) is a uniform upper
bound on the random 11 covering numbers N( f., :Fk, Xl). Assume that the class:F == Uk:Fk
is convex, and let :F be the closure of :F in L2(lJ), where Jl denotes the distribution of X.
Then there is a unique1E :F whose squared loss J (1) achieves infJE:F J (I). We have the
following bound on the difference EJ(fn) - J(I).

Theorem 2 Assume that:F == Uk:Fk is·a convex set offunctions, and consider the squared
error loss. Suppose that I/(x)1 ~ B for all x E ]Rd and f E :F, and P(IYI > B) == o.
Then complexity regularization estimate with complexity penalty satisfying (5) gives

EJ(fn) - J(l) .::; 2min (Akn + inf J(f) - J(I)) + 2
C1

.
k~l fE:Fk n

The proof of this result uses an idea of Barron [1] and a Bernstein-type uniform probability
inequality recently obtained by Lee et all [7].

3 RBF NETWORKS

We will consider radial basis function (RBF) networks with one hidden layer. Such a
network is characterized by a kernel K : lR+ -+ JR. An RBF net of k nodes is of the fonn

k

f(x) = L Wi K ([x - Ci]t A[x - Cil) +wo, (6)
i=l

where wo, WI, .•. , Wk are real numbers called weights, CI, ... , Ck E ]Rd, and the Ai are
nonnegative definite d x d matrices. The kth candidate class :FA: for the function estimation
task is defined as the class of networks with k nodes which satisfy the weight condition

I:~=o tWil ~ b for a fixed b > 0:

:FII: = {t. Wi K([x - Ci]1A[x - cil) +wo:~ IWil ::; b}. (7)
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Let L(x, y) == Ix - yiP, and

J(/) == EI/(X) - YIP,
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(8)

where 1 ~ p < 00. Let JJ denote the probability measure induced by X. Define:F to be the
closui"e in V(JJ) ofthe convex hull of the functions bK([x - c]t A[x - c]) and the constant

function h(x) == 1, x E lRd , where fbi ~ b, c E lRd, and A varies over all nonnegative d x d
matrices. That is, :F is the closure of :F == Uk:Fk, where:Fk is given in (7). Let 9 E :F be
arbitrary. If we assume that IK Iis uniformly bounded, then by Corollary 1 of Darken et ala
[3], we have for 1 :::; p ~ 2 that

(9)

where Ilf - 911£1'(1') denotes the LP(jl) norm (f If - r IPdjl) IIp, and.1"k is givenin (7).
The approximation error infJErk J(/) - J(f*) can be dealt with using this result if the
optimal 1* happens to be in :F. In this case, we obtain

inf J(/) - J(/*) == O(ljVk)
JErk

for all 1 ~ p ~ 2. Values ofp close to 1 are of great importance for robust neural network
regression.

When the kernel K has a bounded total variation, it can be shown that N (t:, 1ik ) ~

(AI/t:)Azk, where the constants AI, A2 depend on ~upx IK(x )1, the total variation V of K,
the dimension d, and on the the constant b in the definition (7) of :Fk. Then, if 1 ~ p ~ 2,
the following consequence of Theorem 1 can be proved for LP regression estimation.

Theorem 3 Let the kernel K be of bounded variation and assume that IYI is bounded.
Thenfor 1 ~ p :::; 2 the error (8) ofthe complexity regularized estimate satisfies

EJ(fn) - J(!*) ~ ~1 [0 (Jkl~g~) +0(J*)]
o ( Co~n)1

/
4) .

For p = 1, i.e., for L 1 regression estimation, this rate is known to be optimal within the
logarithmic factor.

For squared error loss J(f) == E(f(X) - y)2 we have 1* (x) == E(YIX == x). If f* E :F,
then by (9) we obtain

inf 1(/) - J(/*) == O(ljk).
JErk,

(10)

It is easy to check that the class Uk:Fk is convex if the:Fk are the collections of RBF nets
defined in (7). The next result shows that we can get rid of the square root in Theorem 3.

Theorem 4 Assume that K is of bounded variation. Suppose furthermore that IY t is a
bounded random variable, and let L(x, y) = (x - y)2. Then the complexity regularization
RBF squared regression estimate satisfies

EJ(fn) - inf J(f) < 2 min ( inf J(/) - inf J(/) + 0 (k 10gn)) + 0 (~) .
. JEr - k~l JErk JE:F n n
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If f~- E :F, this result and (10) give

EJ(fn) - J(I*) ~ ~? [0 (kl:gn ) + 0 (~ )]

o ( Co~ n ) 1/2) . (11)

This result sharpens and extends Theorem 3.1 of Niyogi and Girosi [9] where the weaker

o (Jk l:g n) + 0 (t) convergence rate was obtained (in a PAC-like formulation) for the

squared loss ofGaussian RBF network regression estimation. The rate in (11) varies linearly
with dimension. Our result is valid for a very large class of RBF schemes, including the
Gaussian RBF networks considered in [9]. Besides having improved on the convergence
rate, our result has the advantage of allowing kernels which are not continuous, such as the
window kernel.

The above convergence rate results hold in the case when there exists an f* minimizing the
risk which is a member of the LP(JJ) closure of :F = U:Fk, where :Fk is given in (7). In
other words, f* should be such that for all ( > 0 there exists a k and a member f of Fk
with Itf - f* IILP(tt) < f. The precise characterization of:F seems to be difficult. However,
based on the work of Girosi and Anzellotti [4] we can describe a large class of functions
that is contained in :F.

Let H (x, t) be a real and bounded function of two variables x E lRd and t E lRn. Suppose
that A is a signed measure on lRn with finite total variation If All. If g(x) is defined as

g(x) = ( H(x, t)>'(dt),
JRD

then 9 E LP (J.l) for any probability measure J.l on lRd. One can reasonably expect that g
can be approximated well by functions f (x) of the fonn

k

f(x) = L wiH(x, ti),
i=}

where t}, ... , tk E lRn and 2::=1 {Wil ~ ItAII. The case m = d and H(x, t) == G(x - t) is
investigated in [4], where a detailed description of function spaces arising from the different
choices of the basis function G is given. Niyogi and Girosi [9] extends this approach to
approximation by convex combinations of translates and dilates of a Gaussian function. In
general, we can prove the following

Lemmal Let

g(x) = ( H(x, t)>'(dt), (12)
JRD

where H (x, t) and A are as above. Define for each k ~ 1 the class offunctions

gk = {f(X) =t wiH(x,ti): t. 1wd ~ II>'II}.

Then for any probab'ility measure JJ on lRd andforany 1 ~ p < 00, thefunctiong can be
approximated in £P(J.l) arbitrarily closely by members of9 == Ugk, i.e.,

inf Ilf - gIILP(tt) ~ 0 as k -+ 00.
lEYk
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To prove this lemma one need only slightly adapt the proof of Theorem 8.2 in [4], or in a
more elementary way following the lines of the probabilistic proof of Theorem 1 of [6]. To
apply the lemma for RBF networks considered in this paper, let n == d2 + d, t == (A, c),
and H(x, t) == ]( ([x - c]tA[x - c]). Then we obtain that:F contains all the functions 9
with the integral representation

g(x) = f K ([x - e]tA[x - en A(dedA),
JRcil+d

for which 11.A1-I ~ b, where b is the constraint on the weights as in (7).
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