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Abstract 

A biologically motivated model of cortical self-organization is pro­
posed. Context is combined with bottom-up information via a 
maximum likelihood cost function. Clusters of one or more units 
are modulated by a common contextual gating Signal; they thereby 
organize themselves into mutually supportive predictors of abstract 
contextual features. The model was tested in its ability to discover 
viewpoint-invariant classes on a set of real image sequences of cen­
tered, gradually rotating faces. It performed considerably better 
than supervised back-propagation at generalizing to novel views 
from a small number of training examples. 

1 THE ROLE OF CONTEXT 

The importance of context effects l in perception has been demonstrated in many 
domains. For example, letters are recognized more quickly and accurately in the 
context of words (see e.g. McClelland & Rumelhart, 1981), words are recognized 
more efficiently when preceded by related words (see e.g. Neely, 1991), individual 
speech utterances are more intelligible in the context of continuous speech, etc. Fur­
ther, there is mounting evidence that neuronal responses are modulated by context. 
For example, even at the level of the LGN in the thalamus, the primary source of 
visual input to the cortex, Murphy & Sillito (1987) have reported cells with "end­
stopped" or length-tuned receptive fields which depend on top-down inputs from 
the cortex. The end-stopped behavior disappears when the top-down connections 
are removed, suggesting that the cortico-thalamic connections are providing contex­
tual modulation to the LGN. Moving a bit higher up the visual hierarchy, von der 
Heydt et al. (1984) found cells which respond to "illusory contours", in the absence 
of a contoured stimulus within the cells' classical receptive fields. These exam­
ples demonstrate that neuronal responses can be modulated by secondary sources 
of information in complex ways, provided the information is consistent with their 
expected or preferred input. 

1 We use the term context rather loosely here to mean any secondary source of input. 
It could be from a different sensory modality, a different input channel within the same 
modality, a temporal history of the input, or top-down information. 
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Figure 1: Two sequences of 48 by 48 pixel images digitized with an IndyCam and prepro­
cessed with a Sobel edge filter. Eleven views of each of four to ten faces were used in the 
simulations reported here. The alternate (odd) views of two of the faces are shown above. 

Why would contextual modulation be such a pervasive phenomenon? One obvious 
reason is that if context can influence processing, it can help in disambiguating or 
cleaning up a noisy stimulus. A less obvious reason may be that if context can 
influence learning, it may lead to more compact representations, and hence a more 
powerful processing system. To illustrate, consider the benefits of incorporating 
temporal history into an unsupervised classifier. Given a continuous sensory signal 
as input, the classifier must try to discover important partitions in its training 
data. If it can discover features that are temporally persistent, and thus insensitive 
to transformations in the input, it should be able to represent the signal compactly 
with a small set offeatures. FUrther, these features are more likely to be associated 
with the identity of objects rather than lower-level attributes. 

However, most classifiers group patterns together on the basis of spatial overlap. 
This may be reasonable if there is very little shift or other form of distortion between 
one time step and the next, but is not a reasonable assumption about the sensory 
input to the cortex. Pre-cortical stages of sensory processing, certainly in the visual 
system (and probably in other modalities), tend to remove low-order correlations in 
space and time, e.g. with centre-surround filters. Consider the image sequences of 
gradually rotating faces in Figure 1. They have been preprocessed by a simple edge­
filter, so that successive views of the same face have relatively little pixel overlap. In 
contrast, identical views of different faces may have considerable overlap. Thus, a 
classifier such as k-means, which groups patterns based on their Euclidean distance, 
would not be expected to do well at classifying these patterns. So how are people 
(and in fact very young children) able to learn to classify a virtually infinite number 
of objects based on relatively brief exposures? It is argued here that the assumption 
of temporal persistence is a powerful constraining factor for achieving this, and is 
one which may be used to advantage in artificial neural networks as well. Not only 
does it lead to the development of higher-order feature analyzers, but it can result in 
more compact codes which are important for applications like image compression. 
Further, as the simulations reported here show, improved generalization may be 
achieved by allowing high-level expectations (e.g. of class labels) to influence the 
development of lower-level feature detectors. 

2 THE MODEL 
Competitive learning (for a review, see Becker & Plumbley, 1996) is considered 
by many to be a reasonably strong candidate model of cortical learning. It can 
be implemented, in its simplest form, by a Hebbian learning rule in a network 
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with lateral inhibition. However, a major limitation of competitive learning, and 
the majority of unsupervised learning procedures (but see the Discussion section), is 
that they treat the input as a set of independent identically distributed (iid) samples. 
They fail to take into account context. So they are unable to take advantage of the 
temporal continuity in signals. In contrast, real sensory signals may be better viewed 
as discretely sampled, continuously varying time-series rather than iid samples. 

The model described here extends maximum likelihood competitive learning 
(MLCL) (Nowlan, 1990) in two important ways: (i) modulation by context, and 
(ii) the incorporation of several "canonical features" of neocortical circuitry. The 
result is a powerful framework for modelling cortical self-organization. 

MLCL retains the benefits of competitive learning mentioned above. Additionally, 
it is more easily extensible because it maximizes a global cost function: 

L = t, log [t, ~iYi(a) 1 (1) 

where the 7r/s are positive weighting coefficients which sum to one, and the Yi'S are 
the clustering unit activations: 

y/a ) N(fla ), Wi, ~i) (2) 

where j(a) is the input vector for pattern a, and NO is the probability of j(a) under 
a Gaussian centred on the ith unit's weight vector, Wi, with covariance matrix 
2: i . For simplicity, Nowlan used a single global variance parameter for all input 
dimensions, and allowed it to shrink during learning. MLCL actually maximizes 
the log likelihood (L) of the data under a mixture of Gaussians model, with mixing 
proportions equal to the 7r'S. L can be maximized by online gradient ascent2 with 
learning rate E: 

D..Wij = E ()L = E "'" 7ri Yi(a) (I/ a ) - Wij) (3) 
()Wij ~ L:k 7rk Yk(a) 

Thus, we have a Hebbian update rule with normalization of post-synaptic unit 
activations (which could be accomplished by shunting inhibition) and weight decay. 

2.1 Contextual modulation 
To integrate a contextual information source into MLCL, our first extension is to 
replace the mixing proportions (7r/s) by the outputs of contextual gating units (see 
Figure 2). Now the 7r/s are computed by separate processing units receiving their 
own separate stream of input, the "context". The role of the gating signals here 
is analagous to that of the gating network in the (supervised) "competing experts" 
model (Jacobs et al., 1991),3 For the network shown in Figure 2, the context is 
simply a time-delayed version of the outputs of a module (explained in the next sub­
section). However, more general forms of context are possible (see Discussion) . In 
the simulations reported here, the context units computed their outputs according 
to a softmax function of their weighted summed inputs Xi: 

(a) _ ex;(a) 
7r . - ---..,.--:-

Z L: j eXj(a) 
(4) 

We refer to the action of the gating units (the 7r/s) as modulatory because of the 

2Nowlan (1990) used a slightly different online weight update rule that more closely 
approximates the batch update rule of the EM algorithm (Dempster et al., 1977) 

3 However , in the competing experts architecture, both the experts and gating network 
receive a common source of input. The competing experts model could be thought of as 
fitting a mixture model of the training signal. 
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Figure 2: The architecture used in the simulations reported here. Except where indicated, 
the gating units received all their inputs across unit delay lines with fixed weights of 1. o. 

multiplicative effect they have on the activities of the clustering units (the y/s). 
This multiplicative interaction is built into the cost function (Equation 1), and 
consequently, arises in the learning rule (Equation 3). Thus, clustering units are 
encouraged to discover features that agree with the current context signal they 
receive. If their context signal is weak or if they fail to capture enough of the 
activation relative to the other clustering units, they will do very little learning. 
Only if a unit's weight vector is sufficiently close to the current input vector and 
it's corresponding gating unit is strongly active will it do substantial learning. 

2.2 Modular, hierarchical architecture 
Our second modification to MLCL is required to apply it to the architecture shown 
in Figure 2, which is motivated by several ubiquitous features of the neocortex: a 
laminar structure, and a functional organization into "cortical clusters" of spatially 
nearby columns with similar receptive field properties (see e.g. Calvin, 1995). The 
cortex, when flattened out, is like a large six-layered sheet. As Calvin (1995, pp. 
269) succinctly puts it, " ... the bottom layers are like a subcortical 'out' box, the 
middle layer like an 'in' box, and the superficial layers somewhat like an 'interof­
fice' box connecting the columns and different cortical areas". The middle and 
superficial layer cells are analagous to the first-layer clustering units and gating 
units respectively. Thus, we propose that the superficial cells may be providing the 
contextual modulation. (The bottom layers are mainly involved in motor output 
and are not included in the present model.) To induce a functional modularity in 
our model analogous to cortical clusters, clustering units within the same module 
receive a shared gating signal. The cost function and learning rule are now: 

L n [m 1 I 1 ~ log ~ 1r~a) l ~Yi/a) (5) 

~ 1r(a) Yi .(a) ( ) 
= E L..J 2: (~) i (a) Ik(a) -Wijk 

a q1rq rYqr 

(6) 

Thus, units in the same module form predictions y~j) of the same contextual feature 

1r~a). Fortunately, there is a disincentive to all of them discovering identical weights: 
they would then do poorly at modelling the input. 

3 EXPERIMENTS 
As a simple test of this model, it was first applied to a set of image sequences of 
four centered, gradually rotating faces (see Figure 1), divided into training and test 
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Training Set Test Set 
no context, 4 faces: Layer 1 59.2 (2.4) 65 (3.5) 
context, 4 faces: Layer 1 88.4 (3.9) 74.5 (4.2) 

Layer 2 88.8 (4.0) 72.7 (4.8) 
context, 10 faces: Layer 1 96.3 (1.2) 71.0 (3.0) 

Layer 2 91.8 (2.4) 70.2 (4.3) 

Table 1 : Mean percent (and standard error) correctly classified faces , across 10 runs, 
for unsupervised clustering networks trained for 2000 iterations with a learning rate of 
0.5, with and without temporal context. Layer 1: clustering units . Layer 2: gating units. 
Performance was assessed as follows: Each unit was assigned to predict the face class for 
which it most frequently won (was the most active). Then for each pattern, the layer's 
activity vector was counted as correct if the winner correctly predicted the face identity. 

sets by taking alternating views. It was predicted that the clustering units should 
discover "features" such as individual views of specific faces. Further, different views 
of the same face should be clustered together within a module because they will be 
observed in the same temporal context, while the gating units should discover the 
identity of faces, independent of viewpoint. 

First, the baseline effect of the temporal context on clustering performance was 
assessed by comparing the network shown in Figure 2 to the same network with the 
input connections to the gating layer removed. The latter is equivalent to MLCL 
with fixed, equal 7ri'S . The results are summarized in Table 1. As predicted, the 
temporal context provides incentive for the clustering units to group successive 
instances of the same face together, and the gating layer can therefore do very well 
at classifying the faces with a much smaller number of units - i.e., independently of 
viewpoint . In contrast, the clustering units without the contextual signal are more 
likely to group together similar views of different people's faces . 

Next, to explore the scaling properties of the model, a network like the one shown 
in Figure 2 but with 10 modules was presented with a set of 10 faces, 11 views each. 
As before, the odd-numbered views were trained on and the even-numbered views 
were tested on. To achieve comparable performance to the smaller network, the 
weights on the self-pointing connections on the gating units were increased from 1.0 
to 3.0, which increased the time constant of temporal agveraging. The model then 
had no difficulty scaling up to the larger training set size, as shown in Table 1. 

Based on the unexpected success of this model, it's classification performance was 
then compared against supervised back-propagation networks on the four face se­
quences. The first supervised network we tried was a simple recurrent network with 
essentially the same architecture: one layer of Gaussian units followed by one layer 
of recurrent soft max units with fixed delay lines. Over ten runs of each model, 
although the unsupervised classifier did worse on the training set (it averaged 88% 
while the supervised model always scored 100% correct), it outperformed the su­
pervised model in its generalization ability by a considerable margin (it averaged 
73% while the supervised model averaged 45% correct) . 

Finally, a feedforward back-propagation network with sigmoid units was trained. 
The following constraint on the hidden layer activations, hj(t): 4 

hidden state cost = ,\ l:)hj(t) - hj(t - 1»2 
j 

4 As Geoff Hinton pointed out, the above constraint, if normalized by the variance, 
maximizes the mutual information between hidden unit states at adjacent time steps. 
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Figure 3: Learning curves, averaged over five runs , for feedforward supervised net with a 
temporal smoothness constraint, for each of four levels of the parameter >.. 

was added to the cost function to encourage temporal smoothness. As the results 
in Figure 3 show, a feedforward network with no contextual input was thereby able 
to perform as well as our unsupervised model when it was constrained to develop 
hidden layer representations that clustered temporally adjacent patterns together. 

4 DISCUSSION 
The unsupervised model's markedly better ability to generalize stems from it's cost 
function; it favors hidden layer features which contribute to temporally coherent 
predictions at the output (gating) layer. Multiple views of a given object are there­
fore more likely to be detected by a given clustering unit in the unsupervised model, 
leading to considerably improved interpolation of novel views. The poor generaliza­
tion performance of back-propagation is not just due to overtraining, as the learning 
curves in Figure 3 show. Even with early stopping, the network with the lowest 
value of >. would not have done as well as the unsupervised network. There is sim­
ply no reason why supervised back-propagation should cluster temporally adjacent 
views together unless it is explicitly forced to do so. 

A "contextual input" stream was implemented in the simplest possible way in the 
simulations reported here, using fixed delay lines. However, the model we have pro­
posed provides for a completely general way of incorporating arbitrary contextual 
information, and could equally well integrate other sources of input. The incoming 
weights to the gating units could also be learned. In fact, the gating unit activities 
actually represent the probabilities of each clustering unit's Gaussian model fitting 
the data, conditioned on the temporal history; hence, the entire model could be 
viewed as a Hidden Markov Model (Geoff Hinton, personal communication). How­
ever, current techniques for fitting HMMs are intractable if state dependencies span 
arbitrarily long time intervals. 

The model in its present implementation is not meant to be a realistic account of the 
way humans learn to recognize faces . Viewpoint-invariant recognition is achieved, 
if at all, in a hierarchical, multi-stage system. One could easily extend our model 
to achieve this, by connecting together a sequence of networks like the one shown 
in Figure 2, each having progressively larger receptive fields. 

A number of other unsupervised learning rules have been proposed based on the as­
sumption oftemporally coherent inputs (FOldiak, 1991; Becker, 1993; Stone, 1996). 
Phillips et al. (1995) have proposed an alternative model of cortical self-organization 
they call coherent Infomax which incorporates contextual modulation. In their 
model, the outputs from one processing stream modulate the activity in another 
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stream, while the mutual information between the two streams is maximized. 

A wide range of perceptual and cognitive abilities could be modelled by a net­
work that can learn features of its primary input in particular contexts. These in­
clude multi-sensor fusion, feature segregation in object recognition using top-down 
cues, and semantic disambiguation in natural language understanding. Finally, it 
is widely believed that memories are stored rapidly in the hippocampus and re­
lated brain structures, and gradually incorporated into the slower-learning cortex 
for long-term storage. The model proposed here may be able to explain how such 
interactions between disparate information sources are learned. 
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