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We have combined an artificial neural network (ANN) character 
classifier with context-driven search over character segmentation, word 
segmentation, and word recognition hypotheses to provide robust 
recognition of hand-printed English text in new models of Apple 
Computer's Newton MessagePad. We present some innovations in the 
training and use of ANNs al; character classifiers for word recognition, 
including normalized output error, frequency balancing, error emphasis, 
negative training, and stroke warping. A recurring theme of reducing a 
priori biases emerges and is discussed. 

1 INTRODUCTION 

We have been conducting research on bottom-up classification techniques ba<;ed on 
trainable artificial neural networks (ANNs), in combination with comprehensive but 
weakly-applied language models. To focus our work on a subproblem that is tractable 
enough to le.:'ld to usable products in a reasonable time, we have restricted the domain to 
hand-printing, so that strokes are clearly delineated by pen lifts. In the process of 
optimizing overall performance of the recognizer, we have discovered some useful 
techniques for architecting and training ANNs that must participate in a larger recognition 
process. Some of these techniques-especially the normalization of output error, 
frequency balanCing, and error emphal;is-suggest a common theme of significant value 
derived by reducing the effect of a priori biases in training data to better represent low 
frequency, low probability smnples, including second and third choice probabilities. 

There is mnple prior work in combining low-level classifiers with various search 
strategies to provide integrated segmentation and recognition for writing (Tappert et al 
1990) and speech (Renals et aI1992). And there is a rich background in the use of ANNs 
a-; classifiers, including their use as a low-level, character classifier in a higher-level word 
recognition system (Bengio et aI1995). But many questions remain regarding optimal 
strategies for deploying and combining these methods to achieve acceptable (to a real 
user) levels of performance. In this paper, we survey some of our experiences in 
exploring refinements and improvements to these techniques. 

2 SYSTEM OVERVIEW 

Our recognition system, the Apple-Newton Print Recognizer (ANPR), consists of three 
conceptual stages: Tentative Segmentation, Classification, and Context-Driven Search. 
The primary data upon which we operate are simple sequences of (x,y) coordinate pairs, 
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plus pen-up/down infonnation, thus defining stroke primitives. The Segmentation stage 
decides which strokes will be combined to produce segments-the tentative groupings of 
strokes that will be treated as possible characters-and produces a sequence of these 
segments together with legal transitions between them. This process builds an implicit 
graph which is then scored in the Classification stage and examined for a maximum 
likelihood interpretation in the Search stage. 

(x,y) Points & Pen-Lifl'i 

Neural Network 
~------~~ ~------~~ 

Classifier Character 
Segmentation 
Hypotheses 

Character 
Class 

Hypotheses 

Words 

Figure 1: A Simplified Block Diagram of Our Hand-Print Recognizer. 

3 TRAINING THE NEURAL NETWORK CLASSIFIER 

Except for an integrated multiple-representations architecture (Yaeger et a11996) and the 
training specitics detailed here, a fairly standard multi-layer perceptron trained with BP 
provides the ANN character cla<;sitler at the heart of ANPR. Training an ANN character 
cla<;sifier for use in a word recognition system, however, has different constraints than 
would training such a system for stand-alone character recognition. All of the techniques 
below, except for the annealing schedule, at least modestly reduce individual character 
recognition accuracy, yet dramatically increase word recognition accuracy. 

A large body of prior work exist<; to indicate the general applicability of ANN technology 
as classifiers providing good estimates of a posteriori probabilities of each class given the 
input (Gish 1990, Richard and Lippmann 1991, Renals and Morgan 1992, Lippmann 
1994, Morgan and Bourlard 1995, and others cited herein). 

3.1 NORMALIZING OUTPUT ERROR 

Despite their ability to provide good first choice a posteriori probabilities, we have found 
that ANN cla<;sifiers do a poor job of representing second and third choice probabilities 
when trained in the classic way-minimizing mean squared error for target vectors that 
are all O's, except for a single 1 corresponding to the target class. This result<; in erratic 
word recognition failures as the net fails to accurately represent the legitimate ambiguity 
between characters. We speculated that reducing the "pressure towards 0" relative to the 
"pressure towards 1" as seen at the output unit", and thus reducing the large bias towards 
o in target vectors, might pennit the net to better model these inherent ambiguities. 

We implemented a technique for "nonnalizing output error" (NormOutErr) by reducing 
the BP error for non-target classes relative to the target class by a factor that nonnalizes 
the total non-target error seen at a given output unit relative to the total target error seen 
at that unit. Assuming a training set with equal representation of classes, this 
nonnalization should then be based on the number of non-target versus target classes in a 
typical training vector, or, simply, the number of output units (minus one). Hence for 
non-target output units, we scale the error at each unit by a constant: 

e'=Ae 
where eis the emlr at an output unit, and A is detlned to be: 

A = 1/[d(NnuIJlUrs -1)] 

where N"uIPuIs is the number of output units, and d is a user-adjusted tuning parameter, 

typically ranging from 0.1 to 0.2. Error at the target output unit is unchanged. Overall, 
this raises the activation values at the output units, due to the reduced pressure towards 
zero, particularly for low-probability samples. Thus the learning algorithm no longer 
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converges to a minimum mean-squared error (MMSE) estimate of P(classlinput), but to 
an MMSE estimate of a nonlinear function !(P(classlinput),A) depending on the factor 
A by which we reduced the error pressure toward zero. 

Using a simple version of the technique of Bourlard and Wellekens (1990), we worked 
out what that resulting nonlinear function is. The net will attempt to converge to 
minimize the modified quadratic error function 

(i;2) = p(l- y)2 + A(l- p)y2 

by setting its output y for a particular class to 
y= p/(A-Ap+ p) 

where p = P(classlinput), and A is as defined above. The inverse function is 

p= yA/(yA+1- y) 
We verified the fit of this function by looking at histograms of character-level empirical 
percentage-correct versus y, a'\ in Figure 2. 
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Figure 2: Empiric.:'ll p vs. y Histogram for a Net Trained with A=D.ll (d=.l), with the 
Corresponding Theoretical Curve. 

Note that the lower-probability samples have their output activations raised significantly, 
relative to the 45° line that A = 1 yields. 

The primary benefit derived from this technique is that the net does a much better job of 
representing second and third choice probabilities, and low probabilities in general. 
Despite a small drop in top choice character accuracy when using NormOutErr, we obtain 
a very significant increase in word accuracy by this technique. Figure 3 shows an 
exaggerated example of this effect, for an atypically large value of d (0.8), which overly 
penalizes character accuracy; however, the 30% decrea'\e in word error rate is normal for 
this technique. (Note: These data are from a multi-year-old experiment, and are not 
necessarily representative of current levels of performance on any absolute scale.) 

% 
E 40 

30 r 
r 20 
o 10 
r o 

NonnOutErr = • 0.0 III 0.8 

Character En-or Word Error 

Figure 3: Character and Word Error Rates for Two Different Values of NormOutErr (d). 
A Value 01'0.0 Disables NormOutErr, Yielding Normal BP. The Unusually High Value 

of 0.8 (A=O.013) Produces Nearly Equal Pressures Towards 0 and 1. 
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3.2 FREQUENCY BALANCING 

Training data from natural English words and phrases exhibit very non-uniform priors for 
the various character classes, and ANNs readily model these priors. However, as with 
NonnOutErr, we tind that reducing the effect of these priors on the net, in a controlled 
way, and thus forcing the net to allocate more of its resources to low-frequency, low­
probability classes is of significant benefit to the overall word recognition process. To 
this end, we explicitly (partially) balance the frequencies of the classes during training. 
We do this by probabilistically skipping and repeating patterns, ba<;ed on a precomputed 
repetition factor. Each presentation of a repeated pattern is "warped" uniquely, as 
discussed later. 

To compute the repetition factor for a class i, we tirst compute a normalized frequency of 
that cla'ls: 

F; = S; IS 
where S; is the number of s~unples in class i, and S is the average number of srunples 
over all cla<;ses, computed in the obvious way: 

_ 1 c 
S =(-LS;) 

c ;=1 

with C being the number of classes. Our repetition factor is then defined to be: 

R; = (a/F;t 
with a and b being user controls over the ~ount of skipping vs. repeating and the degree 
of prior normalization, respectively. Typical values of a range from 0.2 to 0.8, while b 
ranges from 0.5 to 0.9. The factor a < 1 lets us do more skipping than repeating; e.g. for 
a = 0.5, cla<;ses with relative frequency equal to half the average will neither skip nor 
repeat; more frequent classes will skip, and less frequent classes will repeat. A value of 
0.0 for b would do nothing, giving R; = 1.0 for all classes, while a value of 1.0 would 
provide "full" normalization. A value of b somewhat less than one seems to be the best 
choice, letting the net keep some bia<; in favor of cla<;ses with higher prior probabilities. 

This explicit prior-bias reduction is related to Lippmann's (1994) and Morgan and 
Bourlard's (1995) recommended method for converting from the net's estimate of 
posterior probability, p(classlinput), to the value needed in an HMM or Viterbi search, 
p(inputlclass), which is to divide by p(class) priors. Besides eliminating potentially noisy 
estimates of low probability cla<;se.<; and a possible need for renormalization, our approach 
forces the net to actually 1e:'lfI1 a better model of these lower frequency classes. 

3.3 ERROR EMPHASIS 

While frequency balancing corrects for under-represented classes, it cannot account for 
under-represented writing styles. We utilize a conceptually related probabilistic skipping 
of patterns, but this time for just those patterns that the net correctly classifies in it.<; 
forward/recognition pa<;s, as a form of "error empha<;is", to address this problem. We 
define a correct-train probability (0.1 to 1.0) that is used a<; a bia'led coin to determine 
whether a particular pattern, having been correctly classified, will also be used for the 
backward/training pass or not. This only applies to correctly segmented, or "positive" 
patterns, and miscla<;sified patterns are never skipped. 

Especially during early stages of training, we set this parruneter fairly low (around 0.1), 
thus concentrating most of the training time and the net's learning capability on patterns 
that are more difticult to correctly classify. This is the only way we were able to get the 
net to learn to correctly classify unusual character variants, such a') a 3-stroke "5" as 
written by only one training writer. 
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Variants of this scheme are possible in which mLliclalisified patterns would be repeated, or 
different learning rates would apply to correctly and incorrectly classified patterns. It is 
also related to techniques that use a training subset, from which ealiily-classified patterns 
are replaced by randomly selected patterns from the full training set (Guyon et aI1992). 

3.4 NEGATIVE TRAINING 

Our recognizer's tentative segmentation stage necessarily produces a large number of 
invalid segments, due to inherent ambiguities in the character segmentation process. 
During recognition, the network must clalisify these invalid segment<; just ali it would any 
valid segment, with no knowledge of which are valid or invalid. A significant increase in 
word-level recognition accuracy wali obtained by performing negative training with these 
invalid segments. This consists of presenting invalid segments to the net during training, 
with all-zero target vectors. We retain control over the degree of negative training in two 
ways. First is a negative-training Jactor (0.2 to 0.5) that modulates the learning rate 
(equivalently by modulating the error at the output layer) for these negative patterns. 
This reduces the impact of negative training on positive training, and modulates the 
impact on characters that specifically look like element Ii of multi-stroke characters (e.g., 
I, 1, I, 0, 0, 0). Secondly, we control a negative-training probability (0.05 to 0.3), which 
determines the probability that a particular negative sample will actually be trained on 
(for a given presentation). This both reduces the overall impact of negative training, and 
significcUltly reduces training time, since invalid segment<; are more numerous than valid 
segments. As with NormOutErr, this modification hurtli character-level accuracy a little 
bit, but helps word-level accuracy a lot. 

3.5 STROKE WARPING 

During training (but not during recognition), we produce random variations in stroke 
data, consisting of small changes in skew, rotation, and x and y linear and quadratic 
scalings. This produces alternate character forms that are consistent with stylistic 
variations within and between writers, and induces an explicit alipect ratio and rotation 
in variance within the framework of standard back-propagation. The amounts of each 
distortion to apply were chosen through cross-validation experimentli, as just the amount 
needed to yield optimum generalization. We also examined a number of such samples by 
eye to verify that they represent a natural range of variation. A small set of such 
variations is shown in Figure 4. 

Figure 4: A Few Random Stroke Warpings of the Same Original "m" Data. 

Our stroke warping scheme is somewhat related to the ideas of Tangent Dist and Tangent 
Prop (Simard et (II 1992, 1993), in terms of the use of predetermined families of 
transformations, but we believe it is much easier to implement. It is also somewhat 
distinct in applying transformations on the original coordinate data, as opposed to using 
distortions of images. The voice transformation scheme of Chang and Lippmann (1995) 
is also related, but they use a static replication of the training set through a small number 
of tr<Ulsformations, rather than dymunic random transformations of infinite variety. 

3.6 ANNEALING & SCHEDULING 

Many discussions of back-propagation seem to assume the use of a single fixed learning 
rate. We view the stochastic back-propagation process ali more of a simulated annealing, 
with a learning rate starting very high and decreasing only slowly to a very low value. 
We typically start with a rate near l.0 and reduce the rate by a decay Jactor of 0.9 until it 
gets down to about 0.001. The rate decay factor is applied following any epoch for which 
the total squared error increased on the training set. Repeated tests indicate that this 
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approach yields better results than low (or even moderate) initial learning rates, which we 
speculate to be related to a better ability to escape local minima. 

In addition, we find that we obtain best overall results when we also allow some of our 
many training parameters to change over the course of a training run. In particular, the 
correct train probability needs to start out very low to give the net a chance to learn 
unusual character styles, but it should finish up at 1.0 in order to not introduce a general 
posterior probability bias in favor of classes with lots of ambiguous examples. We 
typic.:'llly train a net in t{)Ur "phases" according to parameters such a\; in Figure 5. 

Phase Epochs 

1 25 

2 25 

3 50 

4 30 

Learning 
Rate 

1.0 - 0.5 

0.5 - 0.1 

0.1 - 0.01 

0.01 - 0.001 

Correct Negative 
Train Train 
Prob Prob 

0.1 0.05 

0.25 0.1 

0.5 0.18 

1.0 0.3 

Figure 5: A Typical Multi-Pha-;e Schedule of Learning Rates and Other Parameters for 
Training a Character-Classifier Net. 

4 DISCUSSION AND FUTURE DIRECTIONS 

The normalization of output error, frequency balancing, and error emphasis network­
training methods discussed previously share a unifying theme: Reducing the effect of a 
priori biases in the training data on network learning significantly improves the network's 
performance in an integrated recognition system, despite a modest reduction in the 
network's accuracy for individual characters. Normalization of output error prevents 
over-represented non-target classes from bia\;ing the net against under-represented target 
cla\;ses. Frequency balancing prevent\; over-represented target classes from biasing the 
net against under-represented target classes. And error emphasis prevent\; over­
represented writing styles from bia-;ing the net against under-represented writing styles. 
One could even argue that negative training eliminates an absolute bias towards properly 
segmented characters, and that stroke warping reduces the bias towards those writing 
styles found in the training data, although these techniques provide wholly new 
information to the system as well. 

Though we've offered arguments for why each of these techniques, individually, helps the 
overall recognition process, it is unclear why prior-bias reduction, in general, should be 
so consistently valuable. The general effect may be related to the technique of dividing 
out priors, as is sometimes done to convert from p(clllsslinput) to p(inputlclass). But we 
also believe that forcing the net, during learning, to allocate resources to represent less 
frequent sample types may be directly beneficial. In any event, it is clear that paying 
attention to such biases and taking steps to modulate them is a vital component of 
effective training of a neural network serving as a classifier in a maximum likelihood 
recognition system. 

We speculate that a method of modulating the leaming rate at each output unit-based on 
a measure of its accuracy relative to the other output units-may be possible, and that 
such a method might yield the combined benefits of several of these techniques, with 
fewer user-controllable parameters. 
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