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Abstract 

We present new algorithms for parameter estimation of HMMs. By 
adapting a framework used for supervised learning, we construct iterative 
algorithms that maximize the likelihood of the observations while also 
attempting to stay "close" to the current estimated parameters. We use a 
bound on the relative entropy between the two HMMs as a distance mea­
sure between them. The result is new iterative training algorithms which 
are similar to the EM (Baum-Welch) algorithm for training HMMs. The 
proposed algorithms are composed of a step similar to the expectation 
step of Baum-Welch and a new update of the parameters which replaces 
the maximization (re-estimation) step. The algorithm takes only negligi­
bly more time per iteration and an approximated version uses the same 
expectation step as Baum-Welch. We evaluate experimentally the new 
algorithms on synthetic and natural speech pronunciation data. For sparse 
models, i.e. models with relatively small number of non-zero parameters, 
the proposed algorithms require significantly fewer iterations. 

1 Preliminaries 
We use the numbers from 0 to N to name the states of an HMM. State 0 is a special initial 
state and state N is a special final state. Any state sequence, denoted by s, starts with the 
initial state but never returns to it and ends in the final state. Observations symbols are also 
numbers in {I, ... , M} and observation sequences are denoted by x. A discrete output 
hidden Markov model (HMM) is parameterized by two matrices A and B. The first matrix 
is of dimension [N, N] and ai,j (0:5: i :5: N - 1,1 :5: j :5: N) denotes the probability of 
moving from state i to state j. The second matrix is of dimension [N + 1, M] and bi ,k is the 
probability of outputting symbol k at state i. The set of parameters of an HMM is denoted 
by 0 = (A, B) . (The initial state distribution vector is represented by the first row of A.) 

An HMM is a probabilistic generator of sequences. It starts in the initial state O. It then 
iteratively does the following until the final state is reached. If i is the current state then a 
next state j is chosen according to the transition probabilities out of the current state (row i of 
matrix A). After arriving at state j a symbol is output according to the output probabilities 
of that state (row j of matrix B). Let P(x, slO) denote the probability (likelihood) that an 
HMM 0 generates the observation sequence x on the path s starting at state 0 and ending 

at state N: P(x, sllsl = Ixl + 1, So = 0, slSI = N, 0) ~ I1~~ll as._t,s.bs.,x •. For the 
sake of brevity we omit the conditions on s and x. Throughout the paper we assume that 
the HMMs are absorbing, that is from every state there is a path to the final state with a 
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non-zero probability. Similar parameter estimation algorithms can be derived for ergodic 
HMMs. Absorbing HMMs induce a probability over all state-observation sequences, 
i.e. Ex,s P(x, s18) = 1. The likelihood of an observation sequence x is obtained by 
summing over all possible hidden paths (state sequences), P(xI8) = Es P(x, sI8). To 
obtain the likelihood for a set X of observations we simply mUltiply the likelihood values 
for the individual sequences. We seek an HMM 8 that maximizes the likelihood for a 
given set of observations X, or equivalently, maximizes the log-likelihood, LL(XI8) = 
r:h EXEX In P(xI8). 

To simplify our notation we denote the generic parameter in 8 by Oi, where i ranges 
from 1 to the total number of parameters in A and B (There might be less if some are 
clamped to zero). We denote the total number of parameters of 8 by I and leave the (fixed) 
correspondence between the Oi and the entries of A and B unspecified. The indices are 
naturally partitioned into classes corresponding to the rows of the matrices. We denote by 
[i] the class of parameters to which Oi belongs and by O[i) the vector of all OJ S.t. j E [i]. If 
j E [i] then both Oi and OJ are parameters from the same row of one of the two matrices. 
Whenever it is clear from the context, we will use [i] to denote both a class of parameters 
and the row number (i.e. state) associated with the class. We now can rewrite P(x, s18) as 

nf=l O~'(X,S), where ni(x, s) is the number of times parameter i is used along the path s 
with observation sequence x. (Note that this value does not depend on the actual parameters 
8.) We next compute partial derivatives ofthe likelihood and the log-likelihood using this 
notation. 

o 
OOi P(x, s18) 

oLL(XI8) 
OOi 

lInl(X,S) lIn._I(X,S) ( ) lIn,(X,S)-l lInl(X,S) 
u 1 ... U i-I ni x, SUi ... U 1 

Here 11i(xI8) ~ Es ni(x, s)P(slx, 8) is the expected number of occurrences of the 
transition/output that corresponds to Oi over all paths that produce x in 8. These val­
ues are calculated in the expectation step of the Expectation-Maximization (EM) train­
ing algorithm for HMMs [7], also known as the Baum-Welch [2] or the Forward­
Backward algorithm. In the next sections we use the additional following expectations, 

11i(8) ~ Ex,s ni(X, s)P(x, s18) and 11[i) (8) ~ EjE[i) 11j(8). Note that the summation 
here is over all legal x and s of arbitrary length and 11[i) (8) is the expected number of times 
the state [i] was visited. 

2 Entropic distance functions for HMMs 

Our training algorithms are based on the following framework of Kivinen and Wannuth 
for motivating iterative updates [6]. Assume we have already done a number of iterations 
and our current parameters are 8 . Assume further that X is the set of observations to 
be processed in the current iteration. In the batch case this set never changes and in the 
on-line case X is typically a single observation. The new parameters 8 should stay close 
to 8, which incorporates all the knowledge obtained in past iterations, but it should also 
maximize the log-likelihood on the current date set X. Thus, instead of maximizing the log­
likelihood we maximize, U(8) = 7JLL(XI8) - d(8, 8) (see [6, 5] for further motivation). 
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Here d measures the dis!ance between the old and new parameters and 1] > 0 is a trade-off 
factor. Maximizing U~B) is usually difficult since both the distance function and the log­
likelihood depend on B. As in [6, 5], we approximate the log-likelihood by a first order 
Taylor expansion around 9 = B and add Lagrange multipliers for the constraints that the 
parameters of each class must sum to one: 

U(8) :::::: 1] (LL(XIB) + (8 - B)\7 BLL(XIB») - d(8, B) + L A[i] L OJ. (3) 
[i] JEri] 

A commonly used distance function is the relative entropy. To calculate the relative entropy 
between two HMMs we need to sum over all possible hidden state sequence which leads to 
the following definition, 

d (8 B) ~f ~ P( 18) 1 P(xI8) = ~ (~ P( 18») 1 Ls P(x, s19) 
RE, ~ x n P(xIB) ~ '7 x, s n Ls P(x, siB) 

However, the above divergence is very difficult to calculate and is not a convex function in 
B. To avoid the computational difficulties and the non-convexity of dRE we upper bound 
the relative entropy using the log sum inequality [3]: 

~ - def ~ - P(x, s19) 
dRE (8, B) :s; dRE(B,8) = L.t P(x, s18) In P( IB) 

X,s x,s 

_ (nIl On.(x,s») _ I O. 
L P(x, siB) In 't (J~'(X , S) = L P(x, siB) ?= ni(x, s) In (J: 
x,s n,=1 , x,s ,=1 

~ O· ~ - ~ - O· 
L.t In (J~ L.t P(x, s18) ni(x, s) = L.t ni(8) In (J~ 
i=1 ' X,S i=I' 

Note that for the distance function ~E(9, 8) an HMM is viewed as a joint distribution 
between observation sequences and hidden state sequences. We can further simplify the 
bound on the relative entropy using the following lemma (proof omitted). 

Lemma 1 ForanyabsorbingHMM, 8, and any parameter(Jj E 8, ni(8) = (Jin[i](B). 

This gives the following new formula, dRE (9, 8) = L7= 1 n[j] (9) [Oi In ~ ] , which can 
~ - - - - - {j 

be rewritten as, dRE(8, B) = L[i] n[i](8) dRE(8[iJ> B[i]) = L[i] n[i](8) LjE[i] (Jj In ~ . 

Equation (3) is still difficult to solve since the variables n[i] (9) depend on the new set of 

parameters (which~ are not known). We therefore further approximate ~E(8, 8) by the 

distance function, dRE(9, B) = L[i] n[i](B) LjE[i] OJ In~. 
3 New Parameter Updates 

We now would like to use the distance functions discussed in previous section in U (9). We 
first derive ou~ main update using this distance function. This is done by replacing d( 8,8) 

in U (9) with ~E (9, 8) and setting the derivatives of the resul ting U (9) w.r.t OJ to O. This 
gives the following set of equations (i E {I, ... , I}), 

LXEX ni(xIB) A Oi _ 
1] IXI(Ji - n[i](B) (In (Ji - 1) + A[i] - 0 , 

which are equivalent to 
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We now can solve for Oi and replace A[i] by a nonnalization factor which ensures that the 
sum of the parameters in [i] is 1: 

(~ 2:XEX n.(XI8)) 
_ OJ exp n).)(8) IXI9. 

Oi = (2:x nJ(XI8)) 
2:jE [i] OJ exp n[)6) '~I 9J 

(4) 

The above re-estimation rule is the entropic update for HMMs. l 

We now derive an alternate to the updateof(4). The mixture weights n[i](8) (whichapprox­

imate the original mixture weights n[i] (0) in ~E (0, 8) lead to a state dependent learning 
rate of ~ for the parameters of class [i]. If computation time is limited (see discussion 

n[.)(H) 
below) then the expectations n[i] (8) can be approximated by values that are readily available. 
One possible choice is to use the sample based expectations 2:jE[i]2:xEX nj(xI8)/IXI as 
an approximation for n[i] (8). These weights are needed for calculating the gradient and are 

evaluated in the expectation step of Baum-Welch. Let, n[i](xI8) ~ 2:jE[i] nj(xI8), then 
this approximation leads to the following distance function 

"'" 2:xEX n[i](xI8) d (0. 8.) = "'" 2:xEx n[j)(xI8) "'" O· In OJ (5) 
L- IXI RE [~l> [a) L- IXI L- J 0.' 
[i] [i] JEri] J 

which results in an update which we call the approximated entropic update for HMMs: 

( 
1) 2:xEx n.(XI8)) 

Oi exp ~ . (XI8) 9, - DXEX n['1 

Oi = ( ~ Ll ) ~. 1) DXEX nJ(Xlo) 
DjE[i) OJ exp 2:xEx nbl(XI8) 9J 

(6) 

given a current set of parameters 8 and a learning rate 11 we obtain a new set of parameters 
8 by iteratively evaluating the right-hand-side of the entropic update or the approximated 
entropic update. We calculate the expectations ni(xI8) as done in the expectation step 
of Baum-Welch. The weights n[i](xI8) are obtained by averaging nj(xI8) for j E [i]. 
This lets us evaluate the right-hand-side of the approximated entropic update. The en tropic 
update is slightly more involved and requires an additional calculation of n[i) (8). (Recall 
that n[i] (8) is the expected number oftimes state [i] is visited, unconditioned on the data). To 
compute these expectations we need to sum over all possible sequences of state-observation 
pairs. Since the probability of outputting the possible symbols at a given state sum to one, 
calculating n[i] (8) reduces to evaluating the probability of reaching a state for each possible 
time and sequence length. For absorbing HMMs n[i] (8) can be approximated efficiently 
using dynamic programming; we compute n[i] (8) by summing the probabilities of all legal 
state sequences S of up to length eN (typically C = 3 proved to be sufficient to obtain very 
accurate approximations of n[i] (8). Therefore, the time complexity of calculating n[i] (8) 
depends only on the number of states, regardless of the dimension of the output vector M 
and the training data X. 

1 A subtle improvement is possible over the update (4) by treating the transition probabilities and 
output probabilities differently. First the transition probabilities are updated based on (4). Then 

the state probabilities n[i)(O) = n[i)(A) are recomputed based on th; new parameters A. This is 
possible since the state probabilities depend only on the transition probabilities and not on the output 
probabilities. Finally the output probabilities are updated with (4) where the n[.)(O) are used in place 
of the n[i](8). 
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4 The relation to EM and convergence properties 
We first show that the EM algorithm for HMMs can be derived using our framework. To 
do so, we approximate the relative entropy by the X2 distance (see [3]), dRE(p, p) ~ 
dx2(p, p) ~ ~ L:i (P.;~./, and use this distance to approximate dRE (9, 8): 

dRE(9, 8) ~ ~2(9, 8) 1;£ 2: 1l[i) (9) dx2(9[i),8[i)) 
[i) 

~ A - ~ L:XEX 1l[i) (xI8) 
~ L-n[i)(8) dx2(8[i]>8[i)) ~ L- IXI 

[i) [i) 

Here dx2(9[i), 8[i)) = ~ L:j E[i) (9'~,8.)2 . By minimizing U (9) with the last version of the X2 
distance function and following the same derivation steps as for the approximated entropic 
update we arrive at what we call the approximated X2 update for HMMs: 

Oi = (1 - 7J)Oi + 7J 2: 1li(xI8) /2: 1l[j)(xI8) . (7) 
XEX XEX 

Setting TJ = 1 results in the update, Oi = L:xEX 1li(xI8)/L:xEX 1l[i) (xI8), which is the 
maximization (re-estimation) step of the EM algorithm. 

Although omitted from this paper due to the lack of space, it is can be shown that for 
7J E (0,1] the en tropic updates and the X2 update improve the likelihood on each iteration. 
Therefore, these updates belong to the family of Generalized EM (GEM) algorithms which 
are guaranteed to converge to a local maximum given some additional conditions [4]. 
Furthennore, using infinitesimal analysis and second order approximation of the likelihood 
function at the (local) maximum similar to [10]. it can be shown that the approximated X2 
update is a contraction mapping and close to the local maximum there exists a learning rate 
7J > 1 which results in a faster rate of convergence than when using TJ = 1. 

5 Experiments with Artificial and Natural Data 
In order to test the actual convergence rate of the algorithms and to compare them to 
Baum-Welch we created synthetic data using HMMs. In our experiments we mainly used 
sparse models, that is, models with many parameters clamped to zero. Previous work 
(e.g., [5, 6]) might suggest that the entropic updates will perfonn better on sparse models. 
(Indeed, when we used dense models to generate the data, the algorithms showed almost 
the same perfonnance). The training algorithms, however, were started from a randomly 
chosen dense model. When comparing the algorithms we used the same initial model. 
Due to different trajectories in parameter space, each algorithm may converge to a different 
(local) maximum. For the clarity of presentation we show here results for cases where all 
updates converged to the same maximum, which often occur when the HMM generating the 
data is sparse and there are enough examples (typically tens of observations per non-zero 
parameter). We tested both the entropic updates and the X2 updates. Learning rates greater 
than one speed up convergence. The two entropic updates converge almost equally fast 
on synthetic data generated by an HMM. For natural data the entropic update converges 
slightly faster than the approximated version. The X2 update also benefits from learning 
rates larger than one. However, the x2-update need to be used carefully since it does not 
necessarily ensure non-negativeness of the new parameters for 7J > 1. This problems is 
exaggerated when the data is not generated by an HMM. We therefore used the entropic 
updates in our experiments with natural data. In order to have a fair comparison, we did not 
tune the learning rate 7J and set it to 1.5. In Figure 1 we give a comparison of the entropic 
update, the approximated entropic update, and Baum-Welch (left figure), using an HMM 
to generate the random observation sequences, where N = M = 40 but only 25% (10 
parameters on the average for each transition/observation vector) of the parameters of the 
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HMM are non-zero. The perfonnance of the entropic update and the approximated entropic 
update are practically the same and both updates clearly outperfonn Baum-Welch. One 
reason the perfonnance of the two entropic updates is the same is that the observations were 
indeed generated by an HMM. In this case, approximating the expectations n(il (8) by the 
sample based expectations seems reasonable. These results suggest a valuable alternative 
to using Baum-Welch with a predetermined sparse, potentially biased, HMM where a large 
number of parameters is clamped to zero. Instead, we suggest starting with a full model and 
let one of the en tropic updates find the relevant parameters. This approach is demonstrated 
on the right part of Figure 1. In this example the data was generated by a sparse HMM with 
100 states and 100 possible output symbols. Only 10% ofthe HMM's parameters were non­
zero. Three log-likelihood curves are given in the figure. One is the log-likelihood achieved 
by Baum-Welch when only those parameters that are non-zero in the HMM generating the 
data are initialized to random non-zero values. The other two are the log-likelihood of the 
entropic update and Baum-Welch when all the parameters are initialized randomly. The 
curves show that the en tropic update compensates for its inferior initialization in less than 
10 iterations (see horizontal line in Figure 1) and from this point on it requires only 23 
more iterations to converge compared to Baum-Welch which is given prior knowledge of 
the non-zero parameters. In contrast, when Baum-Welch is started with a full model then 
its convergence is much slower than the entropic update. 
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Figure 1: Comparison of the entropic updates and Baum-Welch. 

We next tested the updates on speech pronunciation data. In natural speech, a word might 
be pronounced differently by different speakers. A common practice is to construct a 
set of stochastic models in order to capture the variability of the possible pronunciations. 
alternative pronunciations of a given word. This problem was studied previously in [9] 
using a state merging algorithm for HMMs and in [8] using a subclass of probabilistic 
finite automata. The purpose of the experiments discussed here is not to compare the above 
algorithms to the en tropic updates but rather compare the entropic updates to Baum-Welch. 
Nevertheless, the resulting HMM pronunciation models are usually sparse. Typically, only 
two or three phonemes have a non zero output probability at a given state and the average 
number of states that in practice can follow a states is about 2. Therefore, the entropic 
updates may provide a good alternative to the algorithms presented in [8, 9]. 

We used the TIMIT (Texas Instruments-MIT) database as in [8, 9]. This database contains 
the acoustic wavefonns of continuous speech with phone labels from an alphabet of 62 
phones which constitute a temporally aligned phonetic transcription to the uttered words. 
For the purpose of building pronunciation models, the acoustic data was ignored and we 
partitioned the phonetic labels according to the words that appeared in the data. The data 
was filtered and partitioned so that words occurring between 20 and 100 times in the dataset 
were used for training and evaluation according to the following partition. 75% of the 
occurrences of each word were used as training data for the learning algorithm and the 
remaining 25% were used for evaluation. We then built for each word three pronunciation 
models by training a fully connected HMM whose number of states was set to 1, 1.5 and 
1.75 times the longest sample (denoted by N m). The models were evaluated by calculating 
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the log-likelihood (averaged over 10 different random parameter initializations) of each 
HMM on the phonetic transcription of each word in the test set. In Table 1 we give 
the negative log-likelihood achieved on the test data together with the average number of 
iterations needed for training. Overall the differences in the log-likelihood are small which 
means that the results should be interpreted with some caution. Nevertheless, the entropic 
update obtained the highest likelihood on the test data while needing the least number of 
iterations. The approximated en tropic update and Baum-Welch achieve similar results on 
the test data but the latter requires more iterations. Checking the resulting models reveals 
one reason why the en tropic update achieves higher likelihood values, namely, it does a 
better job in setting the irrelevant parameters to zero (and it does it faster). 

Negative Log-Likelihood # Iterations 
# States 1.0Nm 1.5Nm 1.75Nm 1.0Nm 1.5Nm 1.75Nm 

Baum-Welch 2448 2388 2425 27.4 36.1 41.1 
Approx. EU 2440 2389 2426 25.5 35.0 37.0 
Entropic Update 2418 2352 2405 23.1 30.9 32.6 

Table 1: Comparison of the entropic updates and Baum-Welch on speech pronunciation data. 
6 Conclusions and future research 
In this paper we have showed how the framework of Kivinen and Warmuth [6] can be used 
to derive parameter updates algorithms for HMMs. We view an HMM as a joint distribution 
between the observation sequences and hidden state sequences and use a bound on relative 
entropy as a distance between the new and old parameter settings. If we approximate of the 
relative entropy by the X2 distance, replace the exact state expectations by a sample based 
approximation, and fix the learning rate to one then the framework yields an alternative 
derivation of the EM algorithm for HMMs. Since the EM update uses sample based 
estimates of the state expectations it is hard to use it in an on-line setting. In contrast, the 
on-line versions of our updates can be easily derived using only one observation sequence 
at a time. Also, there are alternative gradient descent based methods for estimating the 
parameters of HMMs. Such methods usually employ an exponential parameterization 
(such as soft-max) of the parameters (see [1 D. For the case of learning one set of mixture 
coefficients an exponential parameterization led to an algorithm with a slower convergence 
rate compared to algorithms derived using entropic distances [5] . However, it is not clear 
whether this is still the case for HMMs. Our future goals is to perform a comparative study 
of the different updates with emphasis on the on-line versions. 
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