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Abstract 

We present a connectionist method for representing images that ex­
plicitly addresses their hierarchical nature. It blends data from neu­
roscience about whole-object viewpoint sensitive cells in inferotem­
poral cortex8 and attentional basis-field modulation in V43 with 
ideas about hierarchical descriptions based on microfeatures.5,11 

The resulting model makes critical use of bottom-up and top-down 
pathways for analysis and synthesis.6 We illustrate the model with 
a simple example of representing information about faces. 

1 Hierarchical Models 

Images of objects constitute an important paradigm case of a representational hi­
erarchy, in which 'wholes', such as faces, consist of 'parts', such as eyes, noses and 
mouths. The representation and manipulation of part-whole hierarchical informa­
tion in fixed hardware is a heavy millstone around connectionist necks, and has 
consequently been the inspiration for many interesting proposals, such as Pollack's 
RAAM.l1 

We turned to the primate visual system for clues. Anterior inferotemporal cortex 
(IT) appears to construct representations of visually presented objects. Mouths and 
faces are both objects, and so require fully elaborated representations, presumably 
at the level of anterior IT, probably using different (or possibly partially overlap­
ping) sets of cells. The natural way to represent the part-whole relationship between 
mouths and faces is to have a neuronal hierarchy, with connections bottom-up from 
the mouth units to the face units so that information about the mouth can be used 
to help recognize or analyze the image of a face, and connections top-down from 
the face units to the mouth units expressing the generative or synthetic knowledge 
that if there is a face in a scene, then there is (usually) a mouth too. There is little 
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empirical support for or against such a neuronal hierarchy, but it seems extremely 
unlikely on the grounds that arranging for one with the correct set of levels for all 
classes of objects seems to be impossible. 

There is recent evidence that activities of cells in intermediate areas in the visual 
processing hierarchy (such as V4) are influenced by the locus of visual attention.3 

This suggests an alternative strategy for representing part-whole information, in 
which there is an interaction, subject to attentional control, between top-down 
generative and bottom-up recognition processing. In one version of our example, 
activating units in IT that represent a particular face leads, through the top-down 
generative model, to a pattern of activity in lower areas that is closely related to 
the pattern of activity that would be seen when the entire face is viewed. This 
activation in the lower areas in turn provides bottom-up input to the recognition 
system. In the bottom-up direction, the attentional signal controls which aspects of 
that activation are actually processed, for example, specifying that only the activity 
reflecting the lower part of the face should be recognized. In this case, the mouth 
units in IT can then recognize this restricted pattern of activity as being a particular 
sort of mouth. Therefore, we have provided a way by which the visual system can 
represent the part-whole relationship between faces and mouths. 

This describes just one of many possibilities. For instance, attentional control could 
be mainly active during the top-down phase instead. Then it would create in VI (or 
indeed in intermediate areas) just the activity corresponding to the lower portion 
of the face in the first place. Also the focus of attention need not be so ineluctably 
spatial. 

The overall scheme is based on an hierarchical top-down synthesis and bottom-up 
analysis model for visual processing, as in the Helmholtz machine6 (note that "hi­
erarchy" here refers to a processing hierarchy rather than the part-whole hierarchy 
discussed above) with a synthetic model forming the effective map: 

'object' 18) 'attentional eye-position' -t 'image' (1) 

(shown in cartoon form in figure 1) where 'image' stands in for the (probabilities 
over the) activities of units at various levels in the system that would be caused by 
seeing the aspect of the 'object' selected by placing the focus and scale of attention 
appropriately. We use this generative model during synthesis in the way described 
above to traverse the hierarchical description of any particular image. We use the 
statistical inverse of the synthetic model as the way of analyzing images to determine 
what objects they depict. This inversion process is clearly also sensitive to the 
attentional eye-position - it actually determines not only the nature of the object 
in the scene, but also the way that it is depicted (ie its instantiation parameters) 
as reflected in the attentional eye position. 

In particular, the bottom-up analysis model exists in the connections leading to 
the 2D viewpoint-selective image cells in IT reported by Logothetis et al8 which 
form population codes for all the represented images (mouths, noses, etc). The 
top-down synthesis model exists in the connections leading in the reverse direction. 
In generalizations of our scheme, it may, of course, not be necessary to generate an 
image all the way down in VI. 

The map (1) specifies a top-down computational task very like the bottom-up one 
addressed using a multiplicatively controlled synaptic matrix in the shifter model 
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Figure 1: Cartoon of the model. In the top-down, generative, direction, the model generates 
images of faces, eyes, mouths or noses based on an attentional eye position and a selection of a 
single top-layer unit; the bottom-up, recognition, direction is the inverse of this map. The response 
of the neurons in the middle layer is modulated sigmoidally (as illustrated by the graphs shown 
inside the circles representing the neurons in the middle layer) by the attentional eye position. See 
section 2 for more details. 

of Olshausen et al.9 Our solution emerges from the control the attentional eye 
position exerts at various levels of processing, most relevantly modulating activity 
in V4.3 Equivalent modulation in the parietal cortex based on actual (rather than 
attentional) eye position! has been characterized by Pouget & Sejnowski13 and 
Salinas & Abbott15 in terms of basis fields. They showed that these basis fields 
can be used to solve the same tasks as the shifter model but with neuronal rather 
than synaptic multiplicative modulation. In fact, eye-position modulation almost 
certainly occurs at many leve~s in the system, possibly including VIP Our sch~me 
clearly requires that the modulating attentional eye-position must be able to become 
detached from the spatial eye-position - Connor et al. 3 collected evidence for part of 
this hypothesis; although the coordinate system(s) of the modulation is not entirely 
clear from their data. 

Bottom-up and top-down mappings are learned taking the eye-position modula­
tion into account. In the experiments below, we used a version of the wake-sleep 
algorithm,6 for its conceptual and computational simplicity. This requires learning 
the bottom-up model from generated imagery (during sleep) and learning the top­
down model from assigned explanations (during observation of real input during 
wake). In the current version, for simplicity, the eye position is set correctly during 
recognition, but we are also interested in exploring automatic ways of doing this. 

2 Results 

We have developed a simple model that illustrates the feasibility of the scheme 
presented above in the context of recognizing and generating cartoon drawings of 
a face and its parts. Recognition involves taking an image of a face or a part 
thereof (the mouth, nose or one of the eyes) at an arbitrary position on the retina, 
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Figure 2: a) Recognition: the left column of each pair shows the stimuli; the right shows the 
resulting activations in the top layer (ordered as face, mouth, nose and eye). The stimuli are faces 
at random positions in the retina. Recognition is performed by setting the attentional eye position 
in the image and setting the attentional scale, which creates a window of attention around the 
attended to position, shown by a circle of corresponding size and position. b) Generation: each 
panel shows the output of the generative pathway for a randomly chosen attentional eye position 
on activating each of the top layer units in turn. The focus of attention is marked by a circle 
whose size reflects the attentional scale. The name of the object whose neuronal representation in 
the top layer was activated is shown above each panel. 

and setting the appropriate top level unit to 1 (and the remaining units to zero). 
Generation involves imaging either a whole face or of one of its parts (selected by 
the active unit in the top layer) at an arbitrary position on the retina. 

The model (figure 1) consists of three layers. The lowest layer is a 32 x 32 'retina'. 
In the recognition direction, the retina feeds into a layer of 500 hidden units. These 
project to the top layer, which has four neurons. In the generative direction, the 
connectivity is reversed. The network is fully connected in both directions. The 
activity of each neuron based on input from the preceding (for recognition) or the 
following layer (for generation) is a linear function (weight matrices wr, Vr in the 
recognition and vg, W g in the generative direction). The attentional eye position 
influences activity through multiplicative modulation of the neuronal responses in 
the hidden layer. The linear response ri = (Wrp)i or ri = (VgO)i of each neuron i 
in the middle layer based on the bottom-up or top-down connections is multiplied 
by ~i = ¢i(ex)¢f(ey)¢f(es), where ¢!x,y,s} are the tuning curves in each dimension 
of the attentional eye position e = (eX, eY , eS), coding the x- and y- coordinates and 
the scale of the focus of attention, respectively. Thus, for the activity mi of hidden 
neuron i we have mi = (Wrp)i ·~i in the recognition pathway and mi = (VgO)i ·~i in 
the generative pathway. The tuning curves of the ~i are chosen to be sigmoid with 
random centers Ci and random directions di E {-I, I}, eg ¢! = u( 4 * d! * (e S - cn). 
In other implementations, we have also used Gaussian tuning functions. In fact, 
the only requirement regarding the shape of the tuning functions is that through a 
superposition of them one can construct functions that show a peaked dependence 
on the attentional eye position. In the recognition direction, the attentional eye 
position also has an influence on the activity in the input layer by defining a 'window 
of attention',7 which we implemented using a Gaussian window centered at the 
attentional eye position with its size given by the attentional scale. This is to allow 
the system to learn models of parts based on experience with images of whole faces. 

To train the model, we employ a variant of the unsupervised wake-sleep algorithm. 6 

In this algorithm, the generative pathway is trained during a wake-phase, in which 
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stimuli in the input layer (the retina, in our case) cause activation of the neurons 
in the network through the recognition pathway, providing an error signal to train 
the generative pathway using the delta rule. Conversely, in the sleep-phase, random 
activation of a top layer unit (in conjunction with a randomly chosen attentional 
eye-position) leads, via the generative connections, to the generation of activation 
in the middle layer and consequently an image in the input layer that is then used to 
adapt the recognition weights, again using the delta rule. Although the delta rule in 
wake-sleep is fine for the recognition direction, it leads to a poor generative model 
- in our simple case, generation is much more difficult than recognition. As an 
interim solution, we therefore train the generative weights using back-propagation, 
which uses the activity in the top layer created by the recognition pathway as the 
input and the retinal activation pattern as the target signal. Hence, learning is 
still unsupervised (except that appropriate attentional eye-positions are always set 
during recognition). We have also experimented with a system in which the weights 
wr and wg are preset and only the weights between layers 2 and 3 are trained. 
For this model, training could be done with the standard wake-sleep algorithm, ie 
using the local delta-rule for both sets of weights. 

Figure 2a shows several examples of the performance of the recognition pathway for 
the different stimuli after 300,000 iterations. The network is able to recognize the 
stimuli accurately at different positions in the visual field. Figure 2b shows several 
examples of the output of the generative model, illustrating its capacity to produce 
images of faces or their parts at arbitrary locations. By imaging a whole face and 
then focusing the attention on eg an area around its center, which activates the 
'nose' unit through the recognition pathway, the relationship that, eg a nose is part 
of a face can be established in a straightforward way. 

3 Discussion 

Representing hierarchical structure is a key problem for connectionism. Visual 
images offer a canonical example for which it seems possible to elucidate some of 
the underlying neural mechanisms. The theory is based on 2D view object selective 
cells in anterior IT, and attentional eye-position modulation of the firing of cells in 
V 4. These work in the context of analysis by synthesis or recognition and generative 
models such that the part-whole hierarchy of an object such as a face (which contains 
eyes, which contain pupils, etc) can be traversed in the generative direction by 
choosing to view the object through a different effective eye-position, and in the 
recognition direction by allowing the real and the attentional eye-positions to be 
decoupled to activate the requisite 2D view selective cells. 

The scheme is related to Pollack's Recursive Auto-Associative Memory (RAAM) 
system. l1 RAAM provides a way of representing tree-structured information - for 
instance to learn an object whose structure is {{A,B},{C,D}}, a standard three­
layer auto-associative net would be taught AB, leading to a pattern of hidden unit 
activations 0:; then it would learn CD leading to (3; and finally 0:(3 leading to I, 
which would itself be the representation of the whole object. The compression 
operation (AB -t 0:) and its expansion inverse are required as explicit methods for 
manipulating tree structure. 

Our scheme for representing hierarchical information is similar to RAAM, using 
the notion of an attentional eye-position to perform its compression and expansion 
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operations. However, whereas RAAM normally constructs its own codes for inter­
mediate levels of the trees that it is fed, here, images of faces are as real and as 
available as those, for instance, of their associated mouths. This not only changes 
the learning task, but also renders sensible a notion of direct recognition without 
repeated RAAMification of the parts. 

Various aspects of our scheme require comment: the way that eye position affects 
recognition; the coding of different instances of objects; the use of top-down infor­
mation during bottom-up recognition; variants of the scheme for objects that are 
too big or too geometrically challenging to 'fit' in one go into a single image; and 
hierarchical objects other than images. We are also working on a more probabilisti­
cally correct version, taking advantage of the statistical soundness of the Helmholtz 
machine. 

Eye position information is ubiquitous in visual processing areas,12 including the 
LG N and VI, 17 as well as the parietal cortex 1 and V 4.3 Further, it can be revealed 
as having a dramatic effect on perception, as in Ramachandran et al'sl4 study on 
intermittent exotropes. This is a form of squint in which the two eyes are normally 
aligned, but in which the exotropic eye can deviate (voluntarily or involuntarily) by 
as much as 60°. The study showed that even if an image is 'burnt' on the retina in 
this eye as an afterimage, and so is fixed in retinal coordinates, at least one compo­
nent of the percept moves as the eye moves. This argues that information about eye 
position dramatically effects visual processing in a manner that is consistent with 
the model presented here of shifts based on modulation. This is also required by 
Bridgeman et al's2 theory of perceptual stability across fixations, that essentially 
builds up an impression of a scene in exactly the form of mapping (1). 

In general, there will be many instances for an object, e.g., many different faces. In 
this general case, the top level would implement a distributed code for the identity 
and instantiation parameters of the objects. We are currently investigating methods 
of implementing this form of representation into the model. 

A key feature of the model is the interaction of the synthesis and analysis path­
ways when traversing the part-whole hierarchies. This interaction between the two 
pathways can also aid the system when performing image analysis by integrating 
information across the hierarchy. Just as in RAAM, the extra feature required 
when traversing a hierarchy is short term memory. For RAAM, the memory stores 
information about the various separate sub-trees that have already been decoded 
(or encoded). For our system, the memory is required during generative traversal 
to force 'whole' activity on lower layers to persist even after the activity on upper 
layers has ceased, to free these upper units to recognize a 'part'. Memory during 
recognition traversal is necessary in marginal cases to accumulate information across 
separate 'parts' as well as the 'whole'. This solution to hierarchical representation 
inevitably gives up the computational simplicity of the naive neuronal hierarchical 
scheme described in the introduction which does not require any such accumulation. 

Knowledge of images that are too large to fit naturally in a single view4 at a canoni­
cal location and scale, or that theoretically cannot fit in a view (like 360° information 
about a room) can be handled in a straightforward extension of the scheme. All this 
requires is generalizing further the notion of eye-position. One can explore one's 
generative model of a room in the same way that one can explore one's generative 
model of a face. 



Neural Models/or Part-Whole Hierarchies 23 

We have described our scheme from the perspective of images. This is convenient 
because of the substantial information available about visual processing. However, 
images are not the only examples of hierarchical structure - this is also very relevant 
to words, music and also inferential mechanisms. We believe that our mechanisms 
are also more general - proving this will require the equivalent of the attentional 
eye-position that lies at the heart of the method. 
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