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Abstract 

We study a time series model that can be viewed as a decision 
tree with Markov temporal structure. The model is intractable for 
exact calculations, thus we utilize variational approximations . We 
consider three different distributions for the approximation: one in 
which the Markov calculations are performed exactly and the layers 
of the decision tree are decoupled, one in which the decision tree 
calculations are performed exactly and the time steps of the Markov 
chain are decoupled, and one in which a Viterbi-like assumption is 
made to pick out a single most likely state sequence. We present 
simulation results for artificial data and the Bach chorales. 

1 Introduction 

Decision trees are regression or classification models that are based on a nested 
decomposition of the input space. An input vector x is classified recursively by a 
set of "decisions" at the nonterminal nodes of a tree, resulting in the choice of a 
terminal node at which an output y is generated. A statistical approach to decision 
tree modeling was presented by Jordan and Jacobs (1994), where the decisions were 
treated as hidden multinomial random variables and a likelihood was computed by 
summing over these hidden variables . This approach, as well as earlier statistical 
analyses of decision trees, was restricted to independently, identically distributed 
data. The goal of the current paper is to remove this restriction; we describe a 
generalization of the decision tree statistical model which is appropriate for time 
senes. 

The basic idea is straightforward-we assume that each decision in the decision tree 
is dependent on the decision taken at that node at the previous time step. Thus we 
augment the decision tree model to include Markovian dynamics for the decisions. 
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For simplicity we restrict ourselves to the case in which the decision variable at 
a given nonterminal is dependent only on the same decision variable at the same 
nonterminal at the previous time step. It is of interest, however, to consider more 
complex models in which inter-nonterminal pathways allow for the possibility of 
various kinds of synchronization. 

Why should the decision tree model provide a useful starting point for time series 
modeling? The key feature of decision trees is the nested decomposition. If we 
view each nonterminal node as a basis function, with support given by the subset 
of possible input vectors x that arrive at the node, then the support of each node 
is the union of the support associated with its children. This is reminiscent of 
wavelets, although without the strict condition of multiplicative scaling. Moreover, 
the regions associated with the decision tree are polygons, which would seem to 
provide a useful generalization of wavelet-like decompositions in the case of a high­
dimensional input space. 

The architecture that we describe in the current paper is fully probabilistic. We 
view the decisions in the decision tree as multinomial random variables, and we 
are concerned with calculating the posterior probabilities of the time sequence of 
hidden decisions given a time sequence of input and output vectors. Although 
such calculations are tractable for decision trees and for hidden Markov models 
separately, the calculation is intractable for our model. Thus we must make use 
of approximations. We utilize the partially factorized variational approximations 
described by Saul and Jordan (1996), which allow tractable substructures (e.g., the 
decision tree and Markov chain substructures) to be handled via exact methods, 
within an overall approximation that guarantees a lower bound on the log likelihood. 

2 Architectures 

2.1 Probabilistic decision trees 

The "hierarchical mixture of experts" (HME) model (Jordan & Jacobs, 1994) is a 
decision tree in which the decisions are modeled probabilistically, as are the outputs. 
The total probability of an output given an input is the sum over all paths in the 
tree from the input to the output. The HME model is shown in the graphical 
model formalism in Figure 2.1. Here a node represents a random variable, and the 
links represent probabilistic dependencies. A conditional probability distribution is 
associated with each node in the graph, where the conditioning variables are the 
node's parents. 

Let Zl, Z2, and z3 denote the (multinomial) random variables corresponding to 
the first, second and third levels of the decision tree. l We associate multinomial 
probabilities P(zl lx,1]l), P(z2Ix,zl,1]2), and P(Z3jx,zl,Z2,1]3) with the decision 
nodes, where 1]1,1]2, and 1]3 are parameters (e.g., Jordan and Jacobs utilized soft­
max transformations of linear functions of x for these probabilities). The leaf prob­
abilities P(y lx, zl, Z2 , Z3, 0) are arbitrary conditional probability models; e.g., lin­
ear/Gaussian models for regression problems. 

The key calculation in the fitting of the HME model to data is the calculation of 
the posterior probabilities of the hidden decisions given the clamped values of x 
and y. This calculation is a recursion extending upward and downward in the tree, 
in which the posterior probability at a given nonterminal is the sum of posterior 
probabilities associated with its children. The recursion can be viewed as a special 

IThroughout the paper we restrict ourselves to three levels for simplicity of presentation. 
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Figure 1: The hierarchical mixture of 
experts as a graphical model. The 
E step of the learning algorithm for 
HME's involves calculating the poste­
rior probabilities of the hidden (un­
shaded) variables given the observed 
(shaded) variables. 
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Figure 2: An HMM as a graphical 
model. The transition matrix appears 
on the horizontal links and the output 
probability distribution on the vertical 
links. The E step of the learning algo­
rithm for HMM's involves calculating 
the posterior probabilities of the hid­
den (unshaded) variables given the ob­
served (shaded) variables. 

case of generic algorithms for calculating posterior probabilities on directed graphs 
(see, e.g., Shachter, 1990). 

2.2 Hidden Markov models 

In the graphical model formalism a hidden Markov model (HMM; Rabiner, 1989) is 
represented as a chain structure as shown in Figure 2.1. Each state node is a multi­
nomial random variable Zt. The links between the state nodes are parameterized by 
the transition matrix a(ZtIZt-l), assumed homogeneous in time. The links between 
the state nodes Zt and output nodes Yt are parameterized by the output probability 
distribution b(YtIZt), which in the current paper we assume to be Gaussian with 
(tied) covariance matrix ~. 

As in the HME model, the key calculation in the fitting of the HMM to observed 
data is the calculation of the posterior probabilities of the hidden state nodes given 
the sequence of output vectors. This calculation-the E step of the Baum-Welch 
algorithm-is a recursion which proceeds forward or backward in the chain. 

2.3 Hidden Markov decision trees 

We now marry the HME and the HMM to produce the hidden Markov decision tree 
(HMDT) shown in Figure 3. This architecture can be viewed in one of two ways: 
(a) as a time sequence of decision trees in which the decisions in a given decision 
tree depend probabilistically on the decisions in the decision tree at the preceding 
moment in time; (b) as an HMM in which the state variable at each moment in 
time is factorized (cf. Ghahramani & Jordan, 1996) and the factors are coupled 
vertically to form a decision tree structure. 

Let the state of the Markov process defining the HMDT be given by the values of 
hidden multinomial decisions z~, z¥, and zr, where the superscripts denote the level 
ofthe decision tree (the vertical dimension) and the sUbscripts denote the time (the 
horizontal dimension). Given our assumption that the state transition matrix has 
only intra-level Markovian dependencies, we obtain the following expression for the 



504 M. I. Jordan, Z Ghahramani and L. K. Saul 

• • • 

Figure 3: The HMDT model is an HME decision tree (in the vertical dimension) 
with Markov time dependencies (in the horizontal dimension). 

HMDT probability model: 

P( {z}, z;, zn, {Yt}l{xt}) = 7r1 (ZUX1)7r2 (zilx1' zt)7r3 (zflx1 ' zL zi) 
T T 

II a1 (z: IXt, zL1)a2 (z; IXt, Z;_1 ' z:)a3(z~lxt , ZL1' z:, z;) II b(Yt IXt, z}, z;, z~) 
t=2 t=l 

Summing this probability over the hidden values zI, z;, and z~ yields the HMDT 
likelihood. 

The HMDT is a 2-D lattice with inhomogeneous field terms (the observed data). 
It is well-known that such lattice structures are intractable for exact probabilistic 
calculations. Thus, although it is straightforward to write down the EM algorithm 
for the HMDT and to write recursions for the calculations of posterior probabilities 
in the E step, these calculations are likely to be too time-consuming for practical 
use (for T time steps, J{ values per node and M levels, the algorithm scales as 
O(J{M+1T)). Thus we turn to methods that allow us to approximate the posterior 
probabilities of interest . 

3 Algori thms 

3.1 Partially factorized variational approximations 

Completely factorized approximations to probability distributions on graphs can 
often be obtained variationally as mean field theories in physics (Parisi, 1988). For 
the HMDT in Figure 3, the completely factorized mean field approximation would 
delink all of the nodes, replacing the interactions with constant fields acting at each 
of the nodes. This approximation, although useful, neglects to take into account 
the existence of efficient algorithms for tractable substructures in the graph. 

Saul and Jordan (1996) proposed a refined mean field approximation to allow in­
teractions associated with tractable substructures to be taken into account. The 
basic idea is to associate with the intractable distribution P a simplified distribu­
tion Q that retains certain of the terms in P and neglects others, replacing them 
with parameters Pi that we will refer to as "variational parameters." Graphically 
the method can be viewed as deleting arcs from the original graph until a forest 
of tractable substructures is obtained. Arcs that remain in the simplified graph 
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correspond to terms that are retained in Q; arcs that are deleted correspond to 
variational parameters. 

To obtain the best possible approximation of P we minimize the Kullback-Liebler 
divergence K L( Q liP) with respect to the parameters J-li. The result is a coupled 
set of equations that are solved iteratively. These equations make reference to the 
values of expectations of nodes in the tractable substructures; thus the (efficient) 
algorithms that provide such expectations are run as subroutines. Based on the pos­
terior expectations computed under Q, the parameters defining P are adjusted. The 
algorithm as a whole is guaranteed to increase a lower bound on the log likelihood. 

3.2 A forest of chains 

The HMDT can be viewed as a coupled set of chains, with couplings induced directly 
via the decision tree structure and indirectly via the common coupling to the output 
vector. If these couplings are removed in the variational approximation, we obtain 
a Q distribution whose graph is a forest of chains. There are several ways to 
parameterize this graph; in the current paper we investigate a parameterization with 
time-varying transition matrices and time-varying fields. Thus the Q distribution 
is given by 

T 

1 II-1( 111 )-2( 212 )-3( 31 3 ) ~ at Zt Zt-1 at Zt Zt_l at Zt Zt_1 
Q t=2 

T 

II iji(zDij;(z;)ij~(zn 
t=l 

where a~(z~ IzL1) and ij;(zD are potentials that provide the variational parameter­
ization. 

3.3 A forest of decision trees 

Alternatively we can drop the horizontal couplings in the HMDT and obtain a 
variational approximation in which the decision tree structure is handled exactly 
and the Markov structure is approximated. The Q distribution in this case is 

T 

II fi(zDf;(zi IzDf~(zrlzt, zi) 
t=l 

Note that a decision tree is a fully coupled graphical model; thus we can view the 
partially factorized approximation in this case as a completely factorized mean field 
approximation on "super-nodes" whose configurations include all possible configu­
rations of the decision tree. 

3.4 A Viterbi-like approximation 

In hidden Markov modeling it is often found that a particular sequence of states 
has significantly higher probability than any other sequence. In such cases the 
Viterbi algorithm, which calculates only the most probable path, provides a useful 
computational alternative. 

We can develop a Viterbi-like algorithm by utilizing an approximation Q that assigns 
probability one to a single path {zi, zF, zn: 

{ I if z~ = zL "It, i 
o otherwise (1) 
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Figure 4: a) Artificial time series data. b) Learning curves for the HMDT. 

Note that the entropy Q In Q is zero, moreover the evaluation of the energy Q In P 
reduces to substituting z~ for z~ in P. Thus the variational approximation is par­
ticularly simple in this case. The resulting algorithm involves a subroutine in which 
a standard Viterbi algorithm is run on a single chain, with the other (fixed) chains 
providing field terms. 

4 Results 

We illustrate the HMDT on (1) an artificial time series generated to exhibit spatial 
and temporal structure at multiple scales, and (2) a domain which is likely to exhibit 
such structure naturally-the melody lines from J .S. Bach's chorales. 

The artificial data was generated from a three level binary HMDT with no inputs, 
in which the root node determined coarse-scale shifts (±5) in the time series, the 
middle node determined medium-scale shifts (±2), and the bottom node determined 
fine-scale shifts (±0.5) (Figure 4a). The temporal scales at these three nodes-as 
measured by the rate of convergence (second eigenvalue) of the transition matrices, 
with 0 (1) signifying immediate (no) convergence-were 0.85,0.5, and 0.3, respec­
tively. 

We implemented forest-of-chains, forest-of-trees and Viterbi-like approximations. 
The learning curves for ten runs of the forest-of-chains approximation are shown in 
Figure 4b. Three plateau regions are apparent, corresponding to having extracted 
the coarse, medium, and fine scale structures of the time series. Five runs captured 
all three spatia-temporal scales at their correct level in the hierarchy; three runs 
captured the scales but placed them at incorrect nodes in the decision tree; and two 
captured only the coarse-scale structure.2 Similar results were obtained with the 
Viterbi-like approximation. We found that the forest-of-trees approximation was 
not sufficiently accurate for these data. 

The Bach chorales dataset consists of 30 melody lines with 40 events each.3 Each 
discrete event encoded 6 attributes-start time of the event (st), pitch (pitch), 
duration (dur), key signature (key), time signature (time), and whether the event 
was under a fermata (ferm). 

The chorales dataset was modeled with 3-level HMDTs with branching factors (K) 

2Note that it is possible to bias the ordering of the time scales by ordering the initial 
random values for the nodes of the tree; we did not utilize such a bias in this simulation. 

3This dataset was obtained from the UCI Repository of Machine Learning Datasets. 
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Percent variance explained Temporal scale 
K st pitch dur key time ferm level 1 level 2 level 3 
2 3 6 6 84 95 a 1.00 1.00 0.51 
3 22 38 7 93 99 0 1.00 0.96 0.85 
4 55 48 36 96 99 5 1.00 1.00 0.69 
5 57 41 41 97 99 61 1.00 0.95 0.75 
6 70 40 58 94 99 10 1.00 0.93 0.76 

Table 1: Hidden Markov decision tree models of the Bach chorales dataset: mean 
percentage of variance explained for each attribute and mean temporal scales at the 
different nodes. 

2, 3, 4, 5, and 6 (3 runs at each size, summarized in Table 1). Thirteen out of 15 
runs resulted in a coarse-to-fine progression of temporal scales from root to leaves 
of the tree. A typical run at branching factor 4, for example, dedicated the top 
level node to modeling the time and key signatures-attributes that are constant 
throughout any single chorale-the middle node to modeling start times, and the 
bottom node to modeling pitch or duration. 

5 Conclusions 

Viewed in the context of the burgeoning literature on adaptive graphical probabilis­
tic models-which includes HMM's, HME's, CVQ's, IOHMM's (Bengio & Frasconi, 
1995), and factorial HMM's-the HMDT would appear to be a natural next step. 
The HMDT includes as special cases all of these architectures, moreover it arguably 
combines their best features: factorized state spaces, conditional densities, represen­
tation at multiple levels ofresolution and recursive estimation algorithms. Our work 
on the HMDT is in its early stages, but the earlier literature provides a reasonably 
secure foundation for its development. 
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