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Abstract 

This paper discusses a probabilistic model-based approach to clus­
tering sequences, using hidden Markov models (HMMs) . The prob­
lem can be framed as a generalization of the standard mixture 
model approach to clustering in feature space. Two primary issues 
are addressed. First, a novel parameter initialization procedure is 
proposed, and second, the more difficult problem of determining 
the number of clusters K, from the data, is investigated. Experi­
mental results indicate that the proposed techniques are useful for 
revealing hidden cluster structure in data sets of sequences. 

1 Introduction 

Consider a data set D consisting of N sequences, D = {SI,"" SN}' Si = 
(.f.L ... .f.~J is a sequence of length Li composed of potentially multivariate fea­
ture vectors.f.. The problem addressed in this paper is the discovery from data of a 
natural grouping of the sequences into K clusters. This is analagous to clustering in 
multivariate feature space which is normally handled by methods such as k-means 
and Gaussian mixtures. Here, however, one is trying to cluster the sequences S 
rather than the feature vectors.f.. As an example Figure 1 shows four sequences 
which were generated by two different models (hidden Markov models in this case) . 
The first and third came from a model with "slower" dynamics than the second and 
fourth (details will be provided later). The sequence clustering problem consists 
of being given sample sequences such as those in Figure 1 and inferring from the 
data what the underlying clusters are. This is non-trivial since the sequences can 
be of different lengths and it is not clear what a meaningful distance metric is for 
sequence comparIson. 

The use of hidden Markov models for clustering sequences appears to have first 
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Figure 1: Which sequences came from which hidden Markov model? 

been mentioned in Juang and Rabiner (1985) and subsequently used in the context 
of discovering subfamilies of protein sequences in Krogh et al. (1994). This present 
paper contains two new contributions in this context: a cluster-based method for 
initializing the model parameters and a novel method based on cross-validated like­
lihood for determining automatically how many clusters to fit to the data. 

A natural probabilistic model for this problem is that of a finite mixture model: 

K 

fK(S) = L/j(SIOj)pj (1) 
j=l 

where S denotes a sequence, Pj is the weight of the jth model , and /j (SIOj) is 
the density function for the sequence data S given the component model /j with 
parameters OJ . Here we will assume that the /j's are HMMs: thus, the OJ'S are the 
transition matrices, observation density parameters, and initial state probabilities, 
all for the jth component. /j (SIOj) can be computed via the forward part of the 
forward backward procedure. More generally, the component models could be any 
probabilistic model for S such as linear autoregressive models, graphical models, 
non-linear networks with probabilistic semantics, and so forth . 

It is important to note that the motivation for this problem comes from the goal 
of building a descriptive model for the data, rather than prediction per se. For the 
prediction problem there is a clearly defined metric for performance, namely average 
prediction error on out-of-sample data (cf. Rabiner et al. (1989) in a speech context 
with clusters of HMMs and Zeevi, Meir, and Adler (1997) in a general time-series 
context). In contrast, for descriptive modeling it is not always clear what the 
appropriate metric for evaluation is, particularly when K, the number of clusters, 
is unknown. In this paper a density estimation viewpoint is taken and the likelihood 
of out-of-sample data is used as the measure of the quality of a particular model. 

2 An Algorithm for Clustering Sequences into ]{ Clusters 

Assume first that K, the number of clusters, is known. Our model is that of a 
mixture of HMMs as in Equation 1. We can immediately observe that this mixture 
can itself be viewed as a single "composite" HMM where the transition matrix A of 
the model is block-diagonal, e.g., if the mixture model consists of two components 
with transition matrices Al and A2 we can represent the overall mixture model as 



650 P Smyth 

a single HMM (in effect, a hierarchical mixture) with transition matrix 

(2) 

where the initial state probabilities are chosen appropriately to reflect the relative 
weights ofthe mixture components (the Pic in Equation 1). Intuitively, a sequence is 
generated from this model by initially randomly choosing either the "upper" matrix 
Al (with probability PI) or the "lower" matrix with probability A2 (with probability 
1 - PI) and then generating data according to the appropriate Ai . There is no 
"crossover" in this mixture model: data are assumed to come from one component 
or the other . Given this composite HMM a natural approach is to try to learn 
the parameters of the model using standard HMM estimation techniques, i.e., some 
form of initialization followed by Baum-Welch to maximize the likelihood . Note 
that unlike predictive modelling (where likelihood is not necessarily an appropriate 
metric to evaluate model quality), likelihood maximization is exactly what we want 
to do here since we seek a generative (descriptive) model for the data. We will 
assume throughout that the number of states per component is known a priori, i.e., 
that we are looking for K HMM components each of which has m states and m 
is known. An obvious extension is to address the problem of learning K and m 
simultaneously but this is not dealt with here. 

2.1 Initialization using Clustering in "Log-Likelihood Space" 

Since the EM algorithm is effectively hill-climbing the likelihood surface, the quality 
of the final solution can depend critically on the initial conditions. Thus, using as 
much prior information as possible about the problem to seed the initialization is 
potentially worthwhile. This motivates the following scheme for initializing the A 
matrix of the composite HMM: 

1. Fit N m-state HMMs, one to each individual sequence Si, 1 ~ i ~ N. 
These HMMs can be initialized in a "default" manner: set the transition 
matrices uniformly and set the means and covariances using the k-means 
algorithm, where here k = m, not to be confused with K, the number of 
HMM components. For discrete observation alphabets modify accordingly. 

2. For each fitted model Mi, evaluate the log-likelihood of each of the N 
sequences given model Mi, i.e., calculate Lij = log L(Sj IMi), 1 ~ i, j ~ N. 

3. Use the log-likelihood distance matrix to cluster the sequences into K 
groups (details of the clustering are discussed below). 

4. Having pooled the sequences into K groups, fit K HMMs, one to each group, 
using the default initialization described above. From the K HMMs we get 
K sets of parameters: initialize the composite HMM in the obvious way, 
i.e., the m x m "block-diagonal" component Aj of A (where A is mK x mK) 
is set to the estimated transition matrix from the jth group and the means 
and covariances of the jth set of states are set accordingly. Initialize the Pj 

in Equation 1 to Nj / N where Nj is the number of sequences which belong 
to cluster j. 

After this initialization step is complete, learning proceeds directly on the composite 
HMM (with matrix A) in the usual Baum-Welch fashion using all of the sequences. 
The intuition behind this initialization procedure is as follows. The hypothesis is 
that the data are being generated by K models. Thus, if we fit models to each 
individual sequence, we will get noisier estimates of the model parameters (than 
if we used all of the sequences from that cluster) but the parameters should be 
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clustered in some manner into K groups about their true values (assuming the 
model is correct). Clustering directly in parameter space would be inappropriate 
(how does one define distance?): however, the log-likelihoods are a natural way to 
define pairwise distances. 

Note that step 1 above requires the training of N sequences individually and step 2 
requires the evaluation of N 2 distances. For large N this may be impractical. Suit­
able modifications which train only on a small random sample of the N sequences 
and randomly sample the distance matrix could help reduce the computational bur­
den, but this is not pursued here. A variety of possible clustering methods can be 
used in step 3 above. The "symmetrized distance" Lij = Ij2(L(Si IMj)+ L(Sj IMi» 
can be shown to be an appropriate measure of dissimilarity between models Mi and 
Mj (Juang and Rabiner 1985). For the results described in this paper, hierarchical 
clustering was used to generate K clusters from the symmetrized distance matrix. 
The "furthest-neighbor" merging heuristic was used to encourage compact clusters 
and worked well empirically, although there is no particular reason to use only this 
method. 

We will refer to the above clustering-based initialization followed by Baum-Welch 
training on the composite model as the "HMM-Clustering" algorithm in the rest of 
the paper. 

2.2 Experimental Results 

Consider a deceptively simple "toy" problem. I-dimensional feature data are gen­
erated from a 2-component HMM mixture (K = 2), each with 2 states. We have 

A - (0.6 0.4) A _ (0.4 0.6) 
1 - 0.4 0.6 2 - 0.6 0.4 

and the observable feature data obey a Gaussian density in each state with 
0'1 = 0'2 = 1 for each state in each component, and PI = 0, P2 = 3 for the re­
spective mean of each state of each component. 4 sample sequences are shown in 
Figure 1. The top, and third from top, sequences are from the "slower" component 
Al (is more likely to stay in any state than switch). In total the training data 
contain 20 sample sequences from each component of length 200. The problem is 
non-trivial both because the data have exactly the same marginal statistics if the 
temporal sequence information is removed and because the Markov dynamics (as 
governed by Al and A2 ) are relatively similar for each component making identifi­
cation somewhat difficult. 

The HMM clustering algorithm was applied to these sequences. The symmetrized 
likelihood distance matrix is shown as a grey-scale image in Figure 2. The axes 
have been ordered so that the sequences from the same clusters are adjacent . The 
difference in distances between the two clusters is apparent and the hierarchical 
clustering algorithm (with K = 2) easily separates the two groups. This initial 
clustering, followed by training separately the two clusters on the set of sequences 
assigned to each cluster, yielded: 

A - (0 .580 0.402) 
1 - 0.420 0.598 

A (0.392 0.611) 
A2 = 0.608 0.389 

A (2.892 
PI = 0.040 

A (2.911 
P2 = 0.138 

) 

) 

A (1.353 
0'1 = 1.219 

A (1.239 
0'2 = 1.339 

) 
) 

Subsequent training of the composite model on all of the sequences produced more 
refined parameter estimates, although the basic cluster structure of the model re­
mained the same (i .e., the initial clustering was robust) . 
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Figure 2: Symmetrized log-likelihood distance matrix. 

For comparative purposes two alternative initialization procedures were used to 
initialize the training ofthe composite HMM. The "unstructured" method uniformly 
initializes the A matrix without any knowledge of the fact that the off-block-diagonal 
terms are zero (this is the "standard" way of fitting a HMM). The "block-uniform" 
method uniformly initializes the K block-diagonal matrices within A and sets the 
off-block-diagonal terms to zero. Random initialization gave poorer results overall 
compared to uniform. 

Table 1: Differences in log-likelihood for different initialization methods. 
Initialization Maximum Mean Standard 

Method Log-Likelihood Log-Likelihood Deviation 
Value Value of Log-Likelihoods 

Unstructured 7.6 0.0 1.3 
Block-Uniform 44.8 8.1 28.7 

HMM-Clustering 55.1 50.4 0.9 

The three alternatives were run 20 times on the data above, where for each run the 
seeds for the k-means component of the initialization were changed. The maximum, 
mean and standard deviations of log-likelihoods on test data are reported in Table 
1 (the log-likelihoods were offset so that the mean unstructured log-likelihood is 
zero) . The unstructured approach is substantially inferior to the others on this 
problem: this is not surprising since it is not given the block-diagonal structure 
of the true model. The Block-Uniform method is closer in performance to HMM­
Clustering but is still inferior. In particular, its log-likelihood is consistently lower 
than that of the HMM-Clustering solution and has much greater variability across 
different initial seeds. The same qualitative behavior was observed across a variety 
of simulated data sets (results are not presented here due to lack of space). 

3 Learning K, the Number of Sequence Components 

3.1 Background 

Above we have assumed that K, the number of clusters, is known. The problem 
of learning the "best" value for K in a mixture model is a difficult one in practice 
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even for the simpler (non-dynamic) case of Gaussian mixtures. There has been con­
siderable prior work on this problem. Penalized likelihood approaches are popular, 
where the log-likelihood on the training data is penalized by the subtraction of a 
complexity term. A more general approach is the full Bayesian solution where the 
posterior probability of each value of K is calculated given the data, priors on the 
mixture parameters, and priors on K itself. A potential difficulty here is the the 
computational complexity of integrating over the parameter space to get the pos­
terior probabilities on K. Various analytic and sampling approximations are used 
in practice. In theory, the full Bayesian approach is fully optimal and probably the 
most useful. However, in practice the ideal Bayesian solution must be approximated 
and it is not always obvious how the approximation affects the quality of the final 
answer. Thus, there is room to explore alternative methods for determining K. 

3.2 A Monte-Carlo Cross-Validation Approach 

Imagine that we had a large test data set Dtest which is not used in fitting any of the 
models. Let LK(Dtest) be the log-likelihood where the model with K components is 
fit to the training data D but the likelihood is evaluated on Dtest . We can view this 
likelihood as a function of the "parameter" K, keeping all other parameters and D 
fixed. Intuitively, this "test likelihood" should be a much more useful estimator than 
the training data likelihood for comparing mixture models with different numbers of 
components. In fact, the test likelihood can be shown to be an unbiased estimator 
of the Kullback-Leibler distance between the true (but unknown) density and the 
model. Thus, maximizing out-of-sample likelihood over K is a reasonable model 
selection strategy. In practice, one does not usually want to reserve a large fraction 
of one's data for test purposes: thus, a cross-validated estimate of log-likelihood can 
be used instead. 

In Smyth (1996) it was found that for standard multivariate Gaussian mixture mod­
eling, the standard v-fold cross-validation techniques (with say v = 10) performed 
poorly in terms of selecting the correct model on simulated data. Instead Monte­
Carlo cross-validation (Shao, 1993) was found to be much more stable: the data are 
partitioned into a fraction f3 for testing and 1 - f3 for training, and this procedure is 
repeated M times where the partitions are randomly chosen on each run (i.e., need 
not be disjoint). In choosing f3 one must tradeoff the variability of the performance 
estimate on the test set with the variability in model fitting on the training set. In 
general, as the total amount of data increases relative to the model complexity, the 
optimal f3 becomes larger. For the mixture clustering problem f3 = 0.5 was found 
empirically to work well (Smyth, 1996) and is used in the results reported here. 

3.3 Experimental Results 

The same data set as described earlier was used where now K is not known a priori. 
The 40 sequences were randomly partitioned 20 times into training and test cross­
validation sets. For each train/test partition the value of K was varied between 1 
and 6, and for each value of K the HMM-Clustering algorithm was fit to the training 
data, and the likelihood was evaluated on the test data. The mean cross-validated 
likelihood was evaluated as the average over the 20 runs. Assuming the models 
are equally likely a priori, one can generate an approximate posterior distribution 
p(KID) by Bayes rule: these posterior probabilities are shown in Figure 3. The 
cross-validation procedure produces a clear peak at K = 2 which is the true model 
size. In general, the cross-validation method has been tested on a variety of other 
simulated sequence clustering data sets and typically converges as a function of the 
number oftraining samples to the true value of K (from below). As the number of 
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Figure 3: Posterior probability distribution on K as estimated by cross-validation. 

data points grow, the posterior distribution on K narrows about the true value of 
K. If the data were not generated by the assumed form of the model, the posterior 
distribution on K will tend to be peaked about the model size which is closest 
(in K-L distance) to the true model. Results in the context of Gaussian mixture 
clustering(Smyth 1996) have shown that the Monte Carlo cross-validation technique 
performs as well as the better Bayesian approximation methods and is more robust 
then penalized likelihood methods such as BIC. 

In conclusion, we have shown that model-based probabilistic clustering can be gener­
alized from feature-space clustering to sequence clustering. Log-likelihood between 
sequence models and sequences was found useful for detecting cluster structure and 
cross-validated likelihood was shown to be able to detect the true number of clusters . 
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