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Abstract 

Probability models can be used to predict outcomes and compensate for 
missing data, but even a perfect model cannot be used to make decisions 
unless the utility of the outcomes, or preferences between them, are also 
provided. This arises in many real-world problems, such as medical di­
agnosis, where the cost of the test as well as the expected improvement 
in the outcome must be considered. Relatively little work has been done 
on learning the utilities of outcomes for optimal decision making. In this 
paper, we show how temporal-difference reinforcement learning (TO(A» 
can be used to determine decision theoretic utilities within the context of 
a mixture model and apply this new approach to a problem in medical di­
agnosis. TO( A) learning of utilities reduces the number of tests that have 
to be done to achieve the same level of performance compared with the 
probability model alone, which results in significant cost savings and in­
creased efficiency. 

1 INTRODUCTION 

Decision theory is normative or prescriptive and can tell us how to be rational and behave 
optimally in a situation [French, 1988]. Optimal here means to maximize the value of the 
expected future outcome. This has been formalized as the maximum expected utility prin­
ciple by [von Neumann and Morgenstern, 1947]. Decision theory can be used to make op­
timal choices based on probabilities and utilities. Probability theory tells us how probable 
different future states are, and how to reason with and represent uncertainty information. 



1062 M. Stensmo and T. 1. Sejnowski 

Utility theory provides values for these states so that they can be compared with each other. 
A simple form of a utility function is a loss function. Decision theory is a combination of 
probability and utility theory through expectation. 

There has previously been a lot of work on learning probability models (neural networks, 
mixture models, probabilistic networks, etc.) but relatively little on representing and rea­
soning about preference and learning utility models. This paper demonstrates how both lin­
ear utility functions (i.e., loss functions) and non-linear ones can be learned as an alternative 
to specifying them manually. 

Automated fault or medical diagnosis is an interesting and important application for deci­
sion theory. It is a sequential decision problem that includes complex decisions (What is 
the most optimal test to do in a situation? When is it no longer effective to do more tests?), 
and other important problems such as missing data (both during diagnosis, i.e., tests not yet 
done, and in the database which learning is done from). We demonstrate the power of the 
new approach by applying it to a real-world problem by learning a utility function to im­
prove automated diagnosis of heart disease. 

'2 PROBABILITY, UTILITY AND DECISION THEORY MODELS 

The system has separate probability and decision theory models. The probability model is 
used to predict the probabilities for the different outcomes that can occur. By modeling the 
joint probabilities these predictions are available no matter how many or few of the input 
variables are available at any instant. Diagnosis is a missing data problem because of the 
question-and-answer cycle that results from the sequential decision making process. 

Our decision theoretic automated diagnosis system is based on hypotheses and deductions 
according to the following steps: 

1. Any number of observations are made. This means that the values of one or several 
observation variables of the probability model are determined. 

2. The system finds probabilities for the different possible outcomes using the joint 
probability model to calculate the conditional probability for each of the possible 
outcomes given the current observations. 

3. Search for the next observation that is expected to be most useful for improving 
the diagnosis according to the Maximum Expected Utility principle. 

Each possible next variable is considered. The expected value of the system pre­
diction with this variable observed minus the current maximum value before mak­
ing the additional observation and the cost of the observation is computed and de­
fined as the net value of information for this variable [Howard, 1966]. The variable 
with the maximum of all of these is then the best next observation to make. 

4. The steps 1-3 above are repeated until further improvements are not possible. This 
happens when none of the net value of information values in step 3 is positive. 
They can be negative since a positive cost has been subtracted. 

Note that we only look ahead one step (called a myopic approximation [Gorry and Barnett, 
1967]). This is in principle suboptimal, however, the reinforcement learning procedure de­
scribed below can compensate for this. The optimal solution is to consider all possible se­
quences, but the search tree grows exponentially in the number of unobserved variables. 
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Joint probabilities are modeled using mixture models [McLachlan and Basford, 1988]. 
Such models can be efficiently trained using the Expectation-Maximization (EM) algorithm 
[Dempster et al., 1977], which has the additional benefit that missing variable values in the 
training data also can be handled correctly. This is important since most real-world data 
sets are incomplete. More detail on the probability model can be found in [Stensmo and 
Sejnowski, 1995; Stensmo, 1995]. This paper is concerned with the utility function part of 
the decision theoretic model. 

The utilities are values assigned to different states so that their usefulness can be compared 
and actions are chosen to maximize the expected future utility. Utilities are represented as 
preferences when a certain disease has been classified but the patient in reality has another 
one [Howard, 1980; Heckerman et al., 1992]. For each pair of diseases there is a utility 
value between 0 and 1, where a 0 means maximally bad and a 1 means maximally good. 
This is a d x d matrix for d diseases, and the matrix can be interpreted as a kind of a loss 
function. The notation is natural and helps for acquiring the values, which is a non-trivial 
problem. Preferences are subjective contrary to probabilities which are objective (for the 
purposes of this paper). For example, a doctor, a patient and the insurance company may 
have different preferences, but the probabilities for the outcomes are the same. 

Methods have been devised to convert perceived risk to monetary values [Howard, 1980]. 
Subjects were asked to answer questions such as: "How much would you have to be paid to 
accept a one in a millionth chance of instant painless death r' The answers are recorded for 
various low levels of risk. It has been empirically found that people are relatively consis­
tent and that perceived risk is linear for low levels of probability. Howard defined the unit 
micromort (mmt) to mean one in J millionth chance of instant painless death and [Heck­
erman et al., 1992] found that one subject valued 1 micromort to $20 (in 1988 US dollars) 
linearly to within a factor of two. We use this to convert utilities in [0,1] units to dollar 
values and vice versa. 

Previous systems asked experts to supply the utility values, which can be very complicated, 
or used some simple approximation. [Heckerman et al., 1992] used a utility value of 1 for 
misclassification penalty when both diseases are malign or both are benign, and 0 otherwise 
(see Figure 4, left). They claim that it worked in their system but this approximation should 
reduce accuracy. We show how to adapt and learn utilities to find better ones. 

3 REINFORCEMENT LEARNING OF UTILmES 

Utilities are adapted using a type of reinforcement learning, specifically the method of tem­
poral differences [Sutton, 1988]. This method is capable of adjusting the utility values cor­
rectly even though a reinforcement signal is only received after each full sequence of ques­
tions leading to a diagnosis. 

The temporal difference algorithm (ID(A» learns how to predict future values from past 
experience. A sequence of observations is used, in our case they are the results of the med­
ical tests that have been done. We used ID(A) to learn how to predict the expected utility 
of the final diagnosis. 

Using the notation of Sutton, the function Pt predicts the expected utility at time t. Pt is a 
vector of expected utilities, one for each outcome. In the linear form described above, Pt = 
P(Xt, Wt) = WtXt, where Wt is a matrix of utility values and Xt is the vector of probabilities 
of the outcomes, our state description. The objective is to learn the utility matrix Wt. 
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We use an intra-sequence version of the ID(,\) algorithm so that learning can occur during 
normal operation of the system [Sutton, 1988]. The update equation is 

t 

Wt+! = Wt + a[P(xt+!, Wt) - P(Xt, Wt)) 2: ,\t-kv wP(Xk, Wt), (1) 
k=1 

where a is the learning rate and ,\ is a discount factor. With Pk = P (x k, Wt) = x k Wt and 
et = E!=l ,\t-kv wP(Xk, wt} = E~=I ,\t-kxk , (1) becomes the two equations 

Wt+l Wt + awt[x t+1 - xt)et 

et+l Xt+l + '\et, 

starting with el = Xl . These update equations were used after each question was answered. 
When the diagnosis was done, the reinforcement signal z (considered to be observation 
Pt+1) was obtained and the weights were updated: Wt+! = Wt + awt[z - Xt)et. A final up­
date of et was not necessary. Note that t~is method allows for the use of any differentiable 
utility function, specifically a neural network, in the place of P(Xk, wt}. 

Preference is sUbjective. In this paper we investigated two examples of reinforcement. One 
was to simply give the highest reinforcement (z = 1) on correct diagnosis and the low­
est (z = 0) for errors. This yielded a linear utility function or loss function that was the 
unity matrix which confirmed that the method works. When applied to a non-linear utility 
function the result is non-trivial. 

In the second example the reinforcement signal was modified by a penalty for the use of 
a high number questions by multiplying each z above with (maXq -q)j(maXq - minq), 
where q is the number of questions used for the diagnostic sequence, and the minimum and 
maximum number of questions are minq and maXq, respectively. The results presented in 
the next section used this reinforcement signal. 

4 RESULTS 

The publicly available Cleveland heart-disease database was used to test the method. It con­
sists of 303 cases where the disorder is one of four types of heart-disease or its absence. 
There are fourteen variables as shown in Figure 1. Continuous variables were converted into 
a 1-0/-N binary code based on their distributions among the cases in the database. Nominal 
and categorical variables were coded with one unit per value. In total 96 binary variables 
coded the 14 original variables. 

To find the parameter values for the mixture model that was used for probability estima­
tion, the EM algorithm was run until convergence [Stensmo and Sejnowski, 1995; Stensmo, 
1995]. The classification error was 16.2%. To get this result all of the observation variables 
were set to their correct values for each case. Note that all this information might not be 
available in a real situation, and that the decision theory model was not needed in this case. 

To evaluate how well the complete sequential decision process system does, we went 
through each case in the database and answered the questions that came up according to 
the correct values for the case. When the system completed the diagnosis sequence, the re­
sult was compared to the actual disease that was recorded in the database. The number of 
questions that were answered for each case was also recorded ( q above). After all of the 
cases had been processed in this way, the average number of questions needed, its standard 
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Observ. Description Values Cost (mmt) Cost ($) 
1 age Age in years continuous 0 0 
2 sex Sex of subject male/female 0 0 
3 cp Chest pain four types 20 400 
4 trestbps Resting blood pressure continuous 40 800 
5 chol Serum cholesterol continuous 100 2000 
6 fbs Fasting blood sugar <,or> 100 2000 

120mgldl 
7 restecg Resting electrocardiographic five values 100 2000 

result 
8 thalach Maximum heart rate achieved continuous 100 2000 
9 exang Exercise induced angina yes/no 100 2000 

lO oldpeak ST depression induced by continuous 100 2000 
exercise relative to rest 

11 slope Slope of peak exercise up/flat/down 100 2000 
STsegment 

12 ca Number major vessels colored 0-3 100 2000 
by flouroscopy 

13 thaI Defect type normaVfixedi 100 2000 
reversible 

Disorder Description Values 
14 num Heart disease No disease/ 

four types 

Figure 1: The Cleveland Heart Disease database. The database consists of 303 cases de­
scribed by 14 variables. Observation costs are somewhat arbitrarily assigned and are given 
in both dollars and converted to micromorts (mmt) in [0,1] units based on $20 per micromort 
(one in 1 millionth chance of instant painless death). 

deviation, and the number of errors were calculated. If the system had several best answers, 
one was selected randomly. 

Observation costs were assigned to the different variables according to Figure 1. Using the 
full utility/decision model and the O/I-approximation for the utility function (left part of 
Figure 4), there were 29.4% errors. The results are summarized in Figure 2. Over the whole 
data set an average of 4.42 questions were used with a standard deviation of 2.02. Asking 
about 4-5 questions instead of 13 is much quicker but unfortunately less accurate. This was 
before the utilities were adapted. 

With TD(~) learning (Figure 3), the number of errors decreased to 16.2% after 85 repeated 
presentations of all of the cases in random order. We varied ~ from 0 to 1 in increments 
of 0.1, and a over several orders of magnitude to find the reported results. The resulting 
average number of questions were 6.05 with a standard deviation of 2.08. The utility matrix 
after 85 iterations is shown in Figure 4 with 0'=0.0005 and ~=O.I. 

The price paid for increased robustness was an increase in the average number of questions 
from 4.42 to 6.05, but the same accuracy was achieved using only less than half of them on 
average. Many people intuitively think that half of the questions should be enough. There 
is, however, no reason for this; furthermore there is no procedure to stop asking questions 
if observations are chosen randomly. 

In this paper a simple state description has been used, namely the predicted probabilities of 
the outcomes. We have also tried other representations by including the test results in the 
state description. On this data set similar results were obtained. 
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Model Errors # Questions St. Dev. 
Probability model only 16.2% 13 -
011 approximation 29.4% 4.42 2.02 
After 85 iterations of TD("\) learning 16.2% 6.05 2.08 

Figure 2: Results on the Cleveland Heart Disease Database. The three methods are de­
scribed in the text. The first method does not use a utility model. The 011 approximation 
use the matrix in Figure 4, left. The utility matrix that was learned by TD("\) is shown in 
Figure 4, right. 
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Figure 3: Learning graphs with discount-rate parameter ..\=0.1, and learning rate a=O.OOO5 
for the TD("\) algorithm. One iteration is a presentation of all of the cases in random order. 

5 SUMMARY AND DISCUSSION 

We have shown how utilities or preferences can be learned for different expected outcomes 
in a complex system for sequential decision making based on decision theory. Temporal­
differences reinforcement learning was efficient and effective. 

This method can be extended in several directions. Utilities are usually modeled linearly in 
decision theory (as with the misclassification utility matrix), since manual specification and 
interpretation of the utility values then is quite straight-forward. There are advantages with 
non-linear utility functions and, as indicated above, our method can be used for any utility 
function that is differentiable. 

Initial After 8S iterations 
1 0 0 0 0 0.8179 0.0698 0.0610 0.0435 0.0505 
0 1 1 1 1 0.0579 0.6397 0.2954 0.3331 0.6308 
0 1 1 1 1 0.0215 0.1799 0.6305 0.3269 0.6353 
0 1 1 1 1 0.0164 0.1430 0.2789 0.7210 0.6090 
0 1 1 1 1 0.0058 0.1352 0.2183 0.2742 0.8105 

Figure 4: Misclassification utility matrices. The disorder no disease is listed in the first 
row and column, followed by the four types of heart disease. Left: Initial utility matrix. 
Right: After TD learning with discount-rate parameter ..\=0.1 and learning rate a=O.OOO5. 
Element Uij (row i, column j) is the utility when outcome i has been chosen but when it 
actually is j. Maximally good has value 1, and maximally bad has value O. 
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An alternative to learning the utility or value function is to directly learn the optimal actions 
to take in each state, as in Q-Iearning [Watkins and Dayan, 1992]. This would require one 
to learn which question to ask in each situation instead of the utility values but would not 
be directly analyzable in terms of maximum expected utility. 
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