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Abstract 

The Self-Organizing Map (SOM) algorithm has been extensively 
studied and has been applied with considerable success to a wide 
variety of problems. However, the algorithm is derived from heuris­
tic ideas and this leads to a number of significant limitations. In 
this paper, we consider the problem of modelling the probabil­
ity density of data in a space of several dimensions in terms of 
a smaller number of latent, or hidden, variables. We introduce a 
novel form of latent variable model, which we call the GTM algo­
rithm (for Generative Topographic Mapping), which allows general 
non-linear transformations from latent space to data space, and 
which is trained using the EM (expectation-maximization) algo­
rithm. Our approach overcomes the limitations of the SOM, while 
introducing no significant disadvantages. We demonstrate the per­
formance of the GTM algorithm on simulated data from flow diag­
nostics for a multi-phase oil pipeline. 

1 Introduction 

The Self-Organizing Map (SOM) algorithm of Kohonen (1982) represents a form of 
unsupervised learning in which a set of unlabelled data vectors tn (n = 1, ... , N) 
in a D-dimensional data space is summarized in terms of a set of reference vectors 
having a spatial organization corresponding (generally) to a two-dimensional sheet1 • 

IBiological metaphor is sometimes invoked when motivating the SOM procedure. It 
should be stressed that our goal here is not neuro-biological modelling, but rather the 
development of effective algorithms for data analysis. 
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While this algorithm has achieved many successes in practical applications, it also 
suffers from some major deficiencies, many of which are highlighted in Kohonen 
(1995) and reviewed in this paper. 

From the perspective of statistical pattern recognition, a fundamental goal in unsu­
pervised learning is to develop a representation of the distribution p(t) from which 
the data were generated. In this paper we consider the problem of modelling p( t) 
in terms of a number (usually two) of latent or hidden variables. By considering a 
particular class of such models we arrive at a formulation in terms of a constrained 
Gaussian mixture which can be trained using the EM (expectation-maximization) 
algorithm. The topographic nature of the representation is an intrinsic feature of 
the model and is not dependent on the details of the learning process. Our model 
defines a generative distribution p(t) and will be referred to as the GTM (Generative 
Topographic Mapping) algorithm (Bishop et al., 1996a). 

2 Latent Variables 

The goal of a latent variable model is to find a representation for the distribution 
p( t) of data in a D-dimensional space t = (t 1 , ... , t D) in terms of a number L of 
latent variables x = (Xl, ... , XL). This is achieved by first considering a non-linear 
function y(x; W), governed by a set of parameters W, which maps points x in the 
latent space into corresponding points y(x; W) in the data space. Typically we 
are interested in the situation in which the dimensionality L of the latent space 
is less than the dimensionality D of the data space, since our premise is that the 
data itself has an intrinsic dimensionality which is less than D. The transformation 
y(x; W) then maps the latent space into an L-dimensional non-Euclidean manifold 
embedded within the data space. 

IT we define a probability distribution p(x) on the latent space, this will induce a 
corresponding distribution p(YIW) in the data space. We shall refer to p(x) as the 
prior distribution of x for reasons which will become clear shortly. Since L < D, 
the distribution in t-space would be confined to a manifold of dimension L and 
hence would be singular. Since in reality the data will only approximately live on 
a lower-dimensional manifold, it is appropriate to include a noise model for the 
t vector. We therefore define the distribution of t, for given x and W, to be a 
spherical Gaussian centred on y(x; W) having variance {3-1 so that p(tlx, W, {3) f"V 

N(tly(x; W),{3-1 I). The distribution in t-space, for a given value of W, is then 
obtained by integration over the x-distribution 

p(tIW,{3) = I p(tlx, W,{3)p(x) dx. (1) 

For a given a data set 1) = (t1 , •.. , t N) of N data points, we can determine the 
parameter matrix W, and the inverse variance {3, using maximum likelihood, where 
the log likelihood function is given by 

N 

L(W,{3) = L Inp(tnIW,{3). (2) 
n=l 

In principle we can now seek the maximum likelihood solution for the weight matrix, 
once we have specified the prior distribution p(x) and the functional form of the 
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Figure 1: We consider a prior distribution p(x) consisting of a superposition of delta 
functions, located at the nodes of a regular grid in latent space. Each node XI is mapped 
to a point Y(XI; W) in data space, which forms the centre of the corresponding Gaussian 
distribution. 

mapping y(x; W), by maximizing L(W, f3). The latent variable model can be re­
lated to the Kohonen SOM algorithm by choosingp(x) to be a sum of delta functions 
centred on the nodes of a regular grid in latent space p(x) = 1/ K ~~l l5(x - Xl). 

This form of p(x) allows the integral in (1) to be performed analytically. Each 
point Xl is then mapped to a corresponding point Y(XI; W) in data space, which 
forms the centre of a Gaussian density function, as illustrated in Figure 1. Thus 
the distribution function in data space takes the form of a Gaussian mixture model 
p(tIW, f3) = 1/ K ~~l p(tIXl, W, f3) and the log likelihood function (2) becomes 

N {I K } 
L(W,f3) = ~ In K ~P(tnIXI' W,f3) . (3) 

This distribution is a constrained Gaussian mixture since the centres of the Gaus­
sians cannot move independently but are related through the function y(x; W). 
Note that, provided the mapping function y(x; W) is smooth and continuous, the 
projected points Y(XI; W) will necessarily have a topographic ordering. 

2.1 The EM Algorithm 

IT we choose a particular parametrized form for y(x; W) which is a differentiable 
function of W we can use standard techniques for non-linear optimization, such as 
conjugate gradients or quasi-Newton methods, to find a weight matrix W*, and 
inverse variance f3*, which maximize L (W , f3). However, our model consists of a 
mixture distribution which suggests that we might seek an EM algorithm (Dempster 
et al., 1977). By making a careful choice of model y(x; W) we will see that the 
M-step can be solved exactly. In particular we shall choose y(x; W) to be given by 
a generalized linear network model of the form 

y(x; W) = W <fJ(x) (4) 

where the elements of <fJ(x) consist of M fixed basis functions <Pj (x), and W is a 
D x M matrix with elements Wkj. Generalized linear networks possess the same 
universal approximation capabilities as multi-layer adaptive networks, provided the 
basis functions <P j (x) are chosen appropriately. 
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By setting the derivatives of (3) with respect to Wkj to zero, we obtain 

(5) 

where ~ is a K x M matrix with elements <P/j = <Pj(X/), T is a N x D matrix with 
elements tkn, and R is a K x N matrix with elements R'n given by 

(6) 

which represents the posterior probability, or responsibility, of the mixture compo­
nents I for the data point n. Finally, G is a K x K diagonal matrix, with elements 
Gil = 'E:=l R'n(W,!3). Equation (5) can be solved for W using standard matrix 
inversion techniques. Similarly, optimizing with respect to {3 we obtain 

(7) 

Here (6) corresponds to the E-step, while (5) and (7) correspond to the M-step. 
Typically the EM algorithm gives satisfactory convergence after a few tens of cycles. 
An on-line version of this algorithm can be obtained by using the Robbins-Monro 
procedure to find a zero of the objective function gradient, or by using an on-line 
version of the EM algorithm. 

3 Relation to the Self-Organizing Map 

The list below describes some of the problems with the SOM procedure and how 
the GTM algorithm solves them. 

1. The SOM algorithm is not derived by optimizing an objective function, 
unlike GTM. Indeed it has been proven (Erwin et al., 1992) that such an 
objective function cannot exist for the SOM algorithm. 

2. In GTM the neighbourhood-preserving nature of the mapping is an auto­
matic consequence of the choice of a smooth, continuous function y(x; W). 
Neighbourhood-preservation is not guaranteed by the SOM procedure. 

3. There is no assurance that the code-book vectors will converge using SOM. 
Convergence of the batch GTM algorithm is guaranteed by the EM algo­
rithm, and the Robbins-Monro theorem provides a convergence proof for 
the on-line version. 

4. GTM defines an explicit probability density function in data space. In con­
trast, SOM does not define a density model. Attempts have been made to 
interpret the density of codebook vectors as a model of the data distribu­
tion but with limited success. The advantages of having a density model 
include the ability to deal with missing data in a principled way, and the 
straightforward possibility of using a mixture of such models, again trained 
using EM. 
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Figure 2: Examples of the posterior probabilities (responsibilities) of the latent space 
points at an early stage (left) and late stage (right) during the convergence of the GTM 
algorithm, evaluated for a single data point from the training set in the oil-flow problem 
discussed in Section 4. Note how the probabilities form a localized 'bubble' whose size 
shrinks automatically during training, in contrast to the hand-crafted shrinkage of the 
neighbourhood function in the SOM. 

5. For SOM the choice of how the neighbourhood function should shrink over 
time during training is arbitrary, and so this must be optimized empirically. 
There is no neighbourhood function to select for GTM. 

6. It is difficult to know by what criteria to compare different runs of the SOM 
procedure. For GTM one simply compares the likelihood of the data under 
the model, and standard statistical tests can be used for model comparison. 

Notwithstanding these key differences, there are very close similarities between the 
SOM and GTM techniques. Figure 2 shows the posterior probabilities (responsi­
bilities) corresponding to the oil flow problem considered in Section 4. At an early 
stage of training the responsibility for representing a particular data point is spread 
over a relatively large region of the map. As the EM algorithm proceeds so this 
responsibility 'bubble' shrinks automatically. The responsibilities (computed in the 
E-step) govern the updating of Wand {3 in the M-step and, together with the 
smoothing effect of the basis functions <Pi (x), play an analogous role to the neigh­
bourhood function in the SOM procedure. While the SOM neighbourhood function 
is arbitrary, however, the shrinking responsibility bubble in GTM arises directly 
from the EM algorithm. 

4 Experimental Results 

We present results from the application of this algorithm to a problem involving 
12-dimensional data arising from diagnostic measurements of oil flows along multi­
phase pipelines (Bishop and James, 1993). The three phases in the pipe (oil, water 
and gas) can belong to one of three different geometrical configurations, correspond­
ing to stratified, homogeneous, and annular flows, and the data set consists of 1000 
points drawn with equal probability from the 3 classes. We take the latent variable 
space to be two-dimensional, since our goal in this application is data visualization. 
Each data point tn induces a posterior distribution p(xltn, W,(3) in x-space. How­
ever, it is often convenient to project each data point down to a unique point in 
x-space, which can be done by finding the mean of the posterior distribution. 
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Figure 3: The left plot shows the posterior-mean projection of the oil flow data in the 
latent space of the non-linear model. The plot on the right shows the same data set 
visualized using the batch SOM procedure, in which each data point is assigned to the point 
on the feature map corresponding to the codebook vector to which it is nearest. In both 
plots, crosses, circles and plus-signs represent the three different oil-flow configurations. 

Figure 3 shows the oil data visualized with GTM and SaM. The CPU times taken 
for the GTM, SaM with a Gaussian neighbourhood, and SaM with a 'top-hat' 
neighbourhood were 644, 1116 and 355 seconds respectively. In each case the algo­
rithms were run for 25 complete passes through the data set. 

5 Discussion 

In the fifteen years since the SaM procedure was first proposed, it has been used 
with great success in a wide variety of applications. It is, however, based on heuris­
tic concepts, rather than statistical principles, and this leads to a number of serious 
deficiencies in the algorithm. There have been several attempts to provide algo­
rithms which are similar in spirit to the SaM but which overcome its limitations, 
and it is useful to compare these to the GTM algorithm. 

The formulation of the elastic net algorithm described by Durbin et al. (1989) 
also constitutes a Gaussian mixture model in which the Gaussian centres acquire a 
spatial ordering during training. The principal difference compared with GTM is 
that in the elastic net the centres are independent parameters but are encouraged 
to be spatially close by the use of a quadratic regularization term, whereas in GTM 
there is no regularizer on the centres and instead the centres are constrained to lie 
on a manifold given by the non-linear projection of the latent-variable space. The 
existence of a well-defined manifold means that the local magnification factors can 
be evaluated explicitly as continuous functions of the latent variables (Bishop et al., 
1996b). By contrast, in algorithms such as SaM and the elastic net, the embedded 
manifold is defined only indirectly as a discrete approximation by the locations of 
the code-book vectors or Gaussian centres. 

One version of the principal curves algorithm (Tibshirani, 1992) introduces a gen­
erative distribution based on a mixture of Gaussians, with a well-defined likelihood 
function, which is trained by the EM algorithm. However, the number of Gaussian 
components is equal to the number of data points, and the algorithm has been 
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formulated for one-dimensional manifolds, making this algorithm further removed 
from the SOM. 

MacKay (1995) considers convolutional models of the form (1) using multi-layer 
network models in which a discrete sample from the latent space is interpreted 
as a Monte Carlo approximation to the integration over a continuous distribution. 
Although an EM approach could be applied to such a model, the M-step of the 
corresponding EM algorithm would itself require a non-linear optimization. 

In conclusion, we have provided an alternative algorithm to the SOM which over­
comes its principal deficiencies while retaining its general characteristics. We know 
of no significant disadvantage in using the GTM algorithm in place of the SOM. 
While we believe the SOM procedure is superseded by the GTM algorithm, is should 
be noted that the SOM has provided much of the inspiration for developing GTM. 

A web site for GTM is provided at: 

http://www.ncrg.aston.ac.uk/GTM/ 

which includes postscript files of relevant papers, software implementations in Mat­
lab and C, and example data sets used in the development of the GTM algorithm. 
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