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Abstract 

Unsupervised learning algorithms based on convex and conic en­
coders are proposed. The encoders find the closest convex or conic 
combination of basis vectors to the input. The learning algorithms 
produce basis vectors that minimize the reconstruction error of the 
encoders. The convex algorithm develops locally linear models of 
the input, while the conic algorithm discovers features. Both al­
gorithms are used to model handwritten digits and compared with 
vector quantization and principal component analysis. The neural 
network implementations involve feedback connections that project 
a reconstruction back to the input layer. 

1 Introduction 

Vector quantization (VQ) and principal component analysis (peA) are two widely 
used unsupervised learning algorithms, based on two fundamentally different ways 
of encoding data. In VQ, the input is encoded as the index of the closest prototype 
stored in memory. In peA, the input is encoded as the coefficients of a linear 
superposition of a set of basis vectors. VQ can capture nonlinear structure in 
input data, but is weak because of its highly localized or "grandmother neuron" 
representation. Many prototypes are typically required to adequately represent the 
input data when the number of dimensions is large. On the other hand, peA uses a 
distributed representation so it needs only a small number of basis vectors to model 
the input. Unfortunately, it can only model linear structures. 

Learning algorithms based on convex and conic encoders are introduced here. These 
encoders are less constrained than VQ but more constrained than peA. As a result, 
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Figure 1: The affine, convex, and conic hulls for two basis vectors. 

they are able to produce sparse distributed representations that are efficient to com­
pute. The resulting learning algorithms can be understood as approximate matrix 
factorizations and can also be implemented as neural networks with feedforward 
and feedback connections between neurons. 

2 Affine, convex, conic, and point encoding 

Given a set of basis vectors {wa}, the linear combination L::=1 vawa is called 

affine } 
con~ex 

comc 
if { Va:::?: 0 , 

Va:::?: 0 . 

L:a Va = 1 , 
L:a Va = 1 , 

The complete set of affine, convex, and conic combinations are called respectively the 
affine, convex, and conic hulls of the basis. These hulls are geometrically depicted in 
Figure 1. The convex hull contains only interpolations of the basis vectors, whereas 
the affine hull contains not only the convex hull but also linear extrapolations. The 
conic hull also contains the convex hull but is not constrained to stay within the 
set La Va = 1. It extends to any nonnegative combination of the basis vectors and 
forms a cone in the vector space. 

Four encoders are considered in this paper. The convex and conic encoders are 
novel, and find the nearest point to the input x in the convex and conic hull of the 
basis vectors. These encoders are compared with the well-known affine and point 
encoders. The affine encoder finds the nearest point to x in the affine hull and is 
equivalent to the encoding in peA, while the point encoder or VQ finds the nearest 
basis vector to the input. All of these encoders minimize the reconstruction error: 

2 

(1) 

The constraints on Va for the convex, conic, and affine encoders were described 
above. Point encoding can be thought of as a heavily constrained optimization of 
Eq. (1): a single Va must equal unity while all the rest vanish. 

Efficient algorithms exist for computing all of these encodings. The affine and point 
encoders are the fastest. Affine encoding is simply a linear transformation of the 
input vector. Point encoding is a nonlinear operation, but is computationally simple 
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since it involves only a minimum distance computation. The convex and conic 
encoders require solving a quadratic programming problem. These encodings are 
more computationally demanding than the affine and point encodingsj nevertheless, 
polynomial time algorithms do exist. The tractability of these problems is related 
to the fact that the cost function in Eq. (1) has no local minima on the convex 
domains in question. These encodings should be contrasted with computationally 
inefficient ones. A natural modification of the point encoder with combinatorial 
expressiveness can be obtained by allowing v to be any vector of zeros and ones 
[1, 2]. Unfortunately, with this constraint the optimization of Eq. (1) becomes an 
integer programming problem and is quite inefficient to solve. 

The convex and conic encodings of an input generally contain coefficients Va that 
vanish, due to the nonnegativity constraints in the optimization of Eq. (1). This 
method of obtaining sparse encodings is distinct from the method of simply trun­
cating a linear combination by discarding small coefficients [3]. 

3 Learning 

There correspond learning algorithms for each of the encoders described above that 
minimize the average reconstruction error over an ensemble of inputs. If a training 
set of m examples is arranged as the columns of a N x m matrix X, then the learning 
and encoding minimization can be expressed as: 

min liX - WVI1 2 
W,V 

(2) 

where IIXII 2 is the summed squares of the elements of X. Learning and encoding 
can thus be described as the approximate factorization of the data matrix X into a 
N x r matrix W of r basis vectors and a r X m matrix V of m code vectors. 

Assuming that the input vectors in X have been scaled to the range [0,1], the 
constraints on the optimizations in Eq. (2) are given by: 

Affine: o ~ Wia ~ 1, 
Convex: o ~ Wia ~ 1, 
Conic: o ~ Wia ~ 1, 

The nonnegativity constraints on W and V prevent cancellations from occurring in 
the linear combinations, and their importance will be seen shortly. The upper bound 
on W is chosen such that the basis vectors are normalized in the same range as the 
inputs X. We noted earlier that the computation for encoding is tractable since 
the cost function Eq. (2) is a quadratic function of V. However, when considered 
as a function of both W and V, the cost function is quartic and finding its global 
minimum for learning can be very difficult. The issue of local minima is discussed 
in the following example. 

4 Example: modeling handwritten digits 

We applied Affine, Convex, Conic, and VQ learning to the USPS database [4], 
which consists of examples of haI!dwritten digits segmented from actual zip codes. 
Each of the 7291 training and 2007 test images were normalized to a 16 x 16 grid 
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VQ Affine (PeA) 

Convex Conic 

Figure 2: Basis vectors for "2" found by VQ, Affine, Convex, and Conic learning. 

with pixel intensities in the range [0,1]. There were noticeable segmentation errors 
resulting in unrecognizable digits, but these images were left in both the training 
and test sets. The training examples were segregated by digit class and separate 
basis vectors were trained for each of the classes using the four encodings. Figure 2 
shows our results for the digit class "2" with r = 25 basis vectors. 

The k-means algorithm was used to find the VQ basis vectors shown in Figure 2. 
Because the encoding is over a discontinuous and highly constrained space, there 
exist many local minima to Eq. (2). In order to deal with this problem, the algorithm 
was restarted with various initial conditions and the best solution was chosen. The 
resulting basis vectors look like "2" templates and are blurry because each basis 
vector is the mean of a large number of input images. 

Affine determines the affine space that best models the input data. As can be seen 
in the figure, the individual basis vectors have no obvious interpretation. Although 
the space found by Affine is unique, its representation by basis vectors is degener­
ate. Any set of r linearly independent vectors drawn from the affine space can be 
used to represent it. This is due to the fact that the product WV is invariant under 
the transformation W ~ W 8 and V ~ 8-1 V. 1 

Convex finds the r basis vectors whose convex hull best fits the input data. The 
optimization was performed by alternating between projected gradient steps of W 
and V. The constraint that the column sums of V equal unity was implemented 

1 Affine is essentially equivalent to peA, except that they represent the affine space in 
different ways. Affine represents it with r points chosen from the space. peA represents 
the affine space with a single point from the space and r - 1 orthonormal directions. This 
is still a degenerate representation, but peA fixes it by taking the point to be the sample 
mean and the r - 1 directions to be the eigenvectors of the covariance matrix of X with 
the largest eigenvalues. 
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Figure 3: Activities and reconstructions of a "2" using conic and convex coding. 

by adding a quadratic penalty term. In contrast to Affine, the basis vectors are 
interpretable as templates and are less blurred than those found by VQ. Many of 
the elements of Wand also of V are zero at the minimum. This eliminates many in­
variant transformations S, because they would violate the nonnegativity constraints 
on Wand V. From our simulations, it appears that most of the degeneracy seen in 
Affine is lifted by the nonnegativity constraints. 

Conic finds basis vectors whose conic hull best models the input images. The 
learning algorithm is similar to Convex except there is no penalty term on the sum 
of the activities. The Conic representation allows combinations of basis vectors, not 
just interpolations between them. As a result, the basis vectors found are features 
rather than templates, as seen in Figure 2. In contrast to Affine, the nonnegativity 
constraint leads to features that are interpretable as correlated strokes. As the 
number of basis vectors r increases, these features decrease in size until they become 
individual pixels. 

These models were used to classify novel test images. Recognition was accomplished 
by separately reconstructing the test images with the different digit models and as­
sociating the image with the model having the smallest reconstruction error. Figure 
3 illustrates an example of classifying a "2" using the conic and convex encodings. 
The basis vectors are displayed weighted by their activites Va and the sparsity in 
the representations can be clearly seen. The bottom part of the figure shows the 
different reconstructions generated by the various digit models. 

With r = 25 patterns per digit class, Convex incorrectly classified 113 digits out of 
the 2007 test examples for an overall error rate of 5.6%. This is virtually identical 
to the performance of k = 1 nearest neighbor (112 errors) and linear r = 25 peA 
models (111 errors). However, scaling up the convex models to r = 100 patterns 
results in an error rate of 4.4% (89 errors). This improvement arises because the 
larger convex hulls can better represent the overall nonlinear nature of the input 
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distributions. This is good performance relative to other methods that do not 
use prior knowledge of invariances, such as the support vector machine (4.0% [5]). 
However, it is not as good as methods that do use prior knowledge, such as nearest 
neighbor with tangent distance (2 .6% [6]). 

On the other hand, Conic coding with r = 25 results in an error rate of 6.8% 
(138 errors). With larger basis sets r > 50, Conic shows worse performance as the 
features shrink to small spots. These results indicate that by itself, Conic does not 
yield good models; non-trivial correlations still remain in the Va and also need to 
be taken into account. For instance, while the conic basis for "9" can fit some "7" 's 
quite well with little reconstruction error, the codes Va are distinct from when it 
fits "9" 'so 

5 Neural network implementation 

Conic and Convex were described above as matrix factorizations. Alternatively, 
the encoding can be performed by a neural network dynamics [7] and the learning 
by a synaptic update rule. We describe here the implementation for the Conic 
network; the Convex network is similar. The Conic network has a layer of N 
error neurons ei and a layer of r encoding neurons Va. The fixed point of the 
encoding dynamics 

dVa [i:e;Wi. +v.f (3) dt +Va 
t=l 

dei 
r 

-+e· Xi - ~WiaVa, (4) 
dt t 

a=l 

optimizes Eq. (1), finding the best convex encoding of the input Xi. The rectification 
nonlinearity [x]+ = max(x,O) enforces the nonnegativity constraint. The error 
neurons subtract the reconstruction from the input Xi. The excitatory connection 
from ei to Va is equal and opposite to the inhibitory connection from Va back to ei. 

The Hebbian synaptic weight update 

(5) 

is made following convergence of the encoding dynamics for each input, while re­
specting the bound constraints on Wia . This performs stochastic gradient descent 
on the ensemble reconstruction error with learning rate "1. 

6 Discussion 

Convex coding is similar to other locally linear models [8, 9, 10, 11]. Distance to 
a convex hull was previously used in nearest neighbor classification [12], though no 
learning algorithm was proposed. Conic coding is similar to the noisy OR [13, 14] 
and harmonium [15] models. The main difference is that these previous models 
contain discrete binary variables, whereas Conic uses continuous ones. The use of 
analog rather than binary variables makes the encoding computationally tractable 
and allows for interpolation between basis vectors. 
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Here we have emphasized the geometrical interpretation of Convex and Conic cod­
ing. They can also be viewed as probabilistic hidden variable models. The inputs Xi 

are visible while the Va are hidden variables, and the reconstruction error in Eq. (1) 
is related to the log likelihood, log P{xilva). No explicit model P(va) for the hidden 
variables was used, which limited the quality of the Conic models in particular. 
The feature discovery capabilities of Conic, however, make it a promising tool for 
building hierarchical representations. We are currently working on extending these 
new coding schemes and learning algorithms to multilayer networks. 
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