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Abstract 

We introduce a neurobiologically plausible model of contour inte­
gration from visual inputs of individual oriented edges. The model 
is composed of interacting excitatory neurons and inhibitory in­
terneurons, receives visual inputs via oriented receptive fields (RFs) 
like those in VI. The RF centers are distributed in space. At each 
location, a finite number of cells tuned to orientations spanning 
1800 compose a model hypercolumn. Cortical interactions modify 
neural activities produced by visual inputs, selectively amplifying 
activities for edge elements belonging to smooth input contours. El­
ements within one contour produce synchronized neural activities. 
We show analytically and empirically that contour enhancement 
and neural synchrony increase with contour length, smoothness 
and closure, as observed experimentally. This model gives testable 
predictions, and in addition, introduces a feedback mechanism al­
lowing higher visual centers to enhance, suppress, and segment 
contours. 

1. Introduction 

The visual system must group local elements in its input into meaningful global 
features to infer the visual objects in the scene. Sometimes local features group into 
regions, as in texture segmentation; at other times they group into contours which 
may represent object boundaries. Although much is known about the processing 
steps that extract local features such as oriented input edges, it is still unclear how 
local features are grouped into global ones more meaningful for objects. In this 
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study, we model the neural mechanisms underlying the grouping of edge elements 
into contours - contour integration. 

Recent psychophysical and physiological observations[14, 8] demonstrate a decrease 
in detection threshold of an edge element, by human observers or a primary cortical 
cell, if there are aligned neighboring edge elements. Changes in neural responses by 
visual stimuli presented outside their RFs have been observed physiologically[9, 8]. 
Human observers easily identify a smooth curve composed of individual, even dis­
connected, Gabor "edge" elements distributed among many similar elements scat­
tered in the background[4]. Horizontal neural connections observed in the primary 
visual cortex[5], and the finding that these connections preferably link cells tuned 
to similar orienations[5], provide a likely neural basis underlying the primitive vi­
sual grouping phenomena such as contour integration. These findings suggest that 
simple and local neural interactions even in VI could contribute to grouping. 

However, it has been difficult to model contour integration using only VI elements 
and operation. Most existing models[15, 18] of contour integration lack well-founded 
biological bases. More neurally based models, e.g., the one by Grossberg and 
Mingolla[7], require operations beyond VI or biologically questionable. It is thus 
desirable to find out whether contour enhancement can indeed occur within VI or 
has to be attributed to top-down feedback. We introduce a VI model of contour 
integration, using orientation selective cells, local cortical circuits, and horizontal 
connections. This model captures the essentials of the contour integration behavior. 
More details of the model can be found in a longer paper[12]. 

2. The Model 

2.1 Model outline 

K neuron pairs at each spatial location i model a hypercolumn in VI (figure 1). 
Each neuron has a receptive field center i and an optimal orientation fJ = k1r / K 
for k = 1,2, ... K. A neuron pair consist of a connected excitatory neuron and 
inhibitory neuron which are denoted by indice (ifJ) for their receptive field center 
and preferred orientation, and are referred to as an edge segment. An edge segment 
receives the visual input via the excitatory cell, whose output quantifies the saliency 
of the edge segment and projects to higher visual centers. The inhibitory cells are 
treated as interneurons. When an input image contains an edge at i oriented at fJo, 

the edge segment ifJ receives input Ii9 (X </J(fJ - fJo ), where </J(fJ) = e- 191 /(1I"/8) is a 
cell's orientation tuning curve. 
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Figure 1: Model visual space, hypercolumn, edge segments, neural elements, visual inputs, 
and neural connections. The input space is a discrete hexagonal or Manhatten grid. 
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Figure 2: Model neural connections and performance for contour enhancement and noise 
reduction. The top graph depicts connections J;(J,j(J1 and W;(J,j(J1 respectively between the 
center (white) horizontal edge and other edges. The whiteness and blackness of each edge 
is proportional to the connection sthength Ji(J,j(J1 and W;(J,j(J1 respectively. The bottom 
row plots visual input and the maximum model outputs. The edge thickness in this row is 
proportional to the value of edge input or activity. The same format applies to the other 
figures in this paper. 

Let Xifl and YiO be the cell membrane potentials for the excitatory and inhibitory 
cells respectively in the edge segment, then 

YiO 

-axXiO - 9y(YiO) + J 09x(XiO) + L J iOj OI9x(XjOI) + Iio + 10 

jO'#iO 

-ayYio + 9x(XiO) + L WiOjOI9x(XjO') + Ie 

jO'#iO 

(1) 

(2) 

where 9x(XiO) and 9y(YiO) are the firing rates from the excitatory and inhibitory cells 
respectively, l/ax and l/ay are the membrane constants, Jo is the self-excitatory 
connection weight, JiO ,jO' and WiO,jOI are synaptic weights between neurons, and 10 

and Ie are the background inputs to the excitatory and inhibitory cells. Without 
loss of generality, we take ax = a y = 1, 9x(X) as threshold linear with saturation 
and an unit gain 9~(X) = 1 in the linear range. 

The synaptic connections JiO,jO' and Wi(},jOI are local and translation and rotation 
invariant (Figure (2)). JiO,jO' increases with the smoothness (small curvature) of 
the curve that best connects (if}) and (jf}') , and edge elements inhibit each other 
via WiO,jOI when they are alternative choices in a smooth curve route. Given an 
input pattern lUI, the network approaches a dynamic state after several membrane 
time constants. As in Figure (2), the neurons with relatively higher final activities 
are those belonging to smooth curves in the input. 

2.2 Model analysis 

Ignoring neural connections between edge segments, the neuron in edge segment if} 
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has input sensitivity 

1 + g~(Yo)g~(xo) - Jog~(xo) 

g~(Yo)g~(xo) 

Z. Li 

(3) 

(4) 

where gx(xo) and gy(yo) are roughly the average neural activities (omitting iO for 
simplicity). Thus the edge activity increases with Ii9 and decreases with Ie (in cases 
that interest us, g~(Yo)g~(xo) > Jog~(xo) -1) . The resulting input-output function 
given Ie, gx(xo) vs. I i9 , corresponds well with physiological data. 

By effectively increasing IiO or Ie, the edge element (jO') can excite or inhibit the 
element (iO) with excitatory-to-excitatory input Ji9 ,j9,gx(Xj9 1 ) and excitatory-to­
inhibitory input WiOj9' gx(Xj9') respectively. Contour enhancement is so (Fig. 2) 
achieved. In the simplest example when the visual input has equally spaced equal 
strength edges from a line and all other edge segments are silent, we can treat the 
line system as one dimensional, omit 0 and take i as locations along the line. A lack 
of inhibition between line segments gives: 

-axxi - gy(Yi) + Jogx(Xi) + L Jijgx(Xj) + 10 + Iline-input 
#i 

(5) 

(6) 

If line is infinite, by symmetry, each edge segment has the same average activity 
gx(Xi) rv gx(xo) for all i. This system can then be seen[12] either as a giant edge 
with self-excitatory connection (Jo + 2::#i Jij ), or a single edge with extra external 
input t1I = (2::#i Jij)gx(xo). Either way, activities gx(xo) are enhanced for each 
edge element in the line (figure 3 and 2). 

This analysis is also applicable to constant curvature curves[12]. It can be shown 
that, in the linear range of gx 0, the response ratio between a curve segment and an 
isolated segment is (g~(yo) + 1- Jo)/(g~(yo) + 1 - Jo - 2::i#j Jij ). Since 2::ih Jij 
decreases with increasing curvature, so does the response enhancement. Translation 
invariance along the curve breaks down in a finite length curve near its two ends, 
where activity enhancement decays by a decreased excitation from fewer neighboring 
segments. This suggests that a closed or longer curve has higher saliency than an 
open or shorter one (figure (3)). This prediction is expected to hold also for curves 
of non-constant curvature, and should playa significant role in the psychophysical 
observation[lO] showing a decreased detection threshold for closed curves from that 
of the open ones. 

Further analysis[12] shows that the edge segments in a curve normally exhibit neural 
oscillations around their mean activity levels with near-zero phase delays from each 
other. The model predicts that, like the contour enhancement, the oscillation is 
stronger for longer, smoother, and closed curves than open and shorter ones, and 
tapers off near curve endings where oscillation synchrony also deteriorates (figure 
(3)). 

2.3 Central feedback control for contour enhancement, snpression, filling 
in, and segmentation 
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Figure 3: Model performance for input curves and noises, Each column is dedicated to 
one input condition. The top row is the visual input; the middle row is the maximum 
neural responses, and the bottom row the segment outputs as a function of time. The 
neural signals in the bottom row are shown superposed. The solid curves plot outputs 
for the segments away from the curve endings, the dash-dotted curves for segments near 
the curve endings, and the dashed curve in each plot, usually the lowest lying one, is an 
example from a noise segment. Note the decrease in neural signal synchrony between the 
curve segments, in the oscillation amplitudes, and average neural activities for the curve 
segments, as the curve becomes open, shorter, and more curled or when the segment is 
near the curve endings. Because the model employs discrete a grid input space, the figure 
'8' curve in the right column is almost not a smooth curve, hence the contour is only very 
weakly enhanced. The enhancement for this curve could be increased by a denser input 
grid or a multiscale input space. 

The model assumes that higher visual centers send inputs Ie to the inhibitory cells, 
to influence neural activities by equation (4). Take Ie = Ie,baekground+Ie,eontrol ~ 0, 
where Ie,baekground is the same for all edge segments and is useful for modulating 
the overall visual alertness level. By setting Ie,eontrol differently for different edge 
segments, higher centers can selectively suppress or enhance activities for some vi­
sual objects (contours) (compare figure 4D,G), and even effectively achieve contour 
segmentation (figure (4H)) by silencing segments from a given curve. A similar feed­
back control mechanism was used in an olfactory model for odor sensitivity control 
and odor segmentation[ll]. Nevertheless, the feedback cannot completely substitute 
for the visual input Iii}. By equation (4), Ie is effective only when g~(Yo)g~(xo) "# 0. 
With insufficient background input 10 , some visual input or excitation from other 
segments is needed to have g~(xo) > 0, even when all the inhibition from Ie is re­
moved by central control. However, a segment with weak visual input or excitation 
from aligned neighboring segments can increase its activity or become active from 
subthreshold. Therefore, this model central feedback can enhance a weak contour or 
fill in an incomplete one (compare figure 4F ,I), but can not enhance or "hallucinate" 
any contour not existing at least partially in the visual input I (figure 4E), 

3. Summary and Discussion 

We have presented a model which accounts for phenomena of contour enhance-
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Figure 4: Central feedback control. The visual inputs are in A, B and C. The rest 
are the model responses under different feedback conditions. D: model response for 
input A without central control. G: model response for input A with line suppres­
sion by Ic,control = O.25Ic ,background on the line segments, and circle enhancement by 
Ic,control = -O.29Ic ,background on the circle elements. H: Same as G except the line sup­
pression signal Ic,control is doubled. E: Model response to input B with enhancement for 
the line and the circle by central feedback Ic,control = -O.29Ic ,background' F: Response to 
input C with no central control. I: Response to input C with line and circle enhancement 
by Ic ,control = -O.29Ic ,background' Note how the input gaps are partiallly filled in F and 
almost completely filled in I. Note that the apparent gaps in the circle are caused by the 
underlying discrete grid in the model input space, and hence no gap actually exists, and 
no filling in is needed, for this circle. Also, with the wrap around boundary condition, the 
line is actually a closed or infinitely long line, and is thus naturally more salient in this 
model without feedback. 

ment using neurally plausible elements in VI. It is shown analytically and empiri­
cally that both the contour enhancement and the neural oscillation amplitudes are 
stronger for longer, closed, and smaller curvature curves, agreeing with experimental 
observations [8, 4, 10, 6, 2]. The model predicts that horizontal connections target 
preferentially excitatory or inhibitory post-synaptic cells when the linked edges are 
aligned or less aligned (Fig. 2). In addition, we introduce a possible feedback mech­
anism by which higher visual centers could selectively enhance or suppress contour 
activities, and achieve contour segmentation. This feedback mechanism has the de­
sirable property that while the higher centers can enhance or complete an existing 
weak and/or fragmented input contour, they cannot enhance a non-exist ant contour 
in the input, thus preventing "hallucination". This property could be exploited by 
higher visual centers for hypothesis testing and object reconstruction by cooperat­
ing with lower visual centers. Analogous computational mechanisms have been used 
in an olfactory model to achieve odor segmentation and sensitivity modulation[ll]. 
It will be interesting to explore the universality of such computational mechanisms 
across sensory modalities. 

The organization of the model is based on various experimental finding[17, 5, 1, 
8, 14]: recurrent excitatory-inhibitory interactions; excitatory and inhibitory link­
ing of edge elements with similar orientation preferences; and neural connection 
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patterns. At the cost of analytical tractability without essential changes in model 
performance, one can relax the model's idealization of a 1:1 ratio in the excitatory 
and inhibitory cell numbers, the lack of connections between the inhibitory cells, 
and the excitatory cells as the exclusive recipients of visual input. While abundant 
feedback connections are observed from higher visual centers to the primary visual 
cortex, there is as yet no clear indication of cell types of their targets [3, 16]. It is 
desirable to find out whether the feedback is indeed directed to the inhibitory cells 
as predicted. 

This model can be extended to stereo, temporal, and chromatic dimensions, by 
linking edge segments aligned in orientation, depth, motion direction and color. 
V1 cells have receptive field tuning in all these dimensions, and cortical connec­
tions are indeed observed to link cells of similar receptive field properties[5]. This 
model does not model many other apparently non-contour related visual phenom­
ena such as receptive field adaptations[5]. It is also beyond this model to explain 
how the higher visual centers decide which segments belong to one contour in order 
to achieve feedback control, although it has been hypothesized that phase locked 
neural oscillations and neural correlations can play such a role[13]. 
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