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Abstract 

We use the constant statistics constraint to calibrate an array of 
sensors that contains gain and offset variations. This algorithm has 
been mapped to analog hardware and designed and fabricated with 
a 2um CMOS technology. Measured results from the chip show that 
the system achieves invariance to gain and offset variations of the 
input signal. 

1 Introduction 

Transistor mismatches and parameter variations cause unavoidable nonuniformities 
from sensor to sensor. A one-time calibration procedure is normally used to coun­
teract the effect of these fixed variations between components. Unfortunately, many 
of these variations fluctuate with time--either with operating point (such as data­
dependent variations) or with external conditions (such as temperature). Calibrat­
ing these sensors one-time only at the "factory" is not suitable-much more frequent 
calibration is required. The sensor calibration problem becomes more challenging as 
an increasing number of different types of sensors are integrated onto VLSI chips at 
higher and higher integration densities. Ullman and Schechtman studied a simple 
gain adjustment algorithm but their method provides no mechanism for canceling 
additive offsets [10]. Scribner has addressed this nonuniformity correction problem 
in software using a neural network technique but it will be difficult to integrate this 
complex solution into analog hardware [9]. A number of researchers have studied 
sensors that output the time-derivative of the signal[9][4]. A simple time derivative 
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cancels any additive offset in the signal but also loses all of the DC and most of 
the low frequency temporal information present. The offset-correction method pro­
posed by this paper, in effect, uses a time-derivative with an extremely long time 
constant thereby preserving much of the low-frequency information present in the 
signal. However, even if an ideal time-derivative approximation is used to cancel 
out additive offsets, the standard deviation process described in this paper can be 
used to factor out gain variations. 

We hope to obtain some clues for sensory adaptation from neurobiological systems 
which possess a tremendous ability to adapt to the surrounding environment at 
multiple time-scales and at multiple stages of processing. Consider the following 
experiments: 

• After staring at a single curved line ten minutes, human subjects report 
that the amount of curvature perceived appears to decrease. Immediately 
after training, the subjects then were shown a straight line and perceived 
it as slightly curved in the opposite direction[5]. 

• After staring long enough at an object in continuous motion, the motion 
seems to decrease with time. Immediately after adaptation, subjects per­
ceive motion in the opposite direction when looking at stationary objects. 
This experiment is called the waterfall effect[2]. 

• Colors tend to look less saturated over time. Color after-images are per­
ceived containing exactly the opponent colors of the original scene[1] . 

Though the purpose of these biological adaptation mechanisms is not clear, some 
theories suggest that these methods allow for fine-tuning the visual system through 
long-term averaging of measured visual parameters[lO]. We will apply such 
continuous-calibration procedures to VLSI sensor calibration. 

The real-world variable x(t) is transduced by a nonlinear response curve into a 
measured variable y(t). For a single operating point, the linear approximation can 
be written as: 

y(t) = ax(t) + b (1) 

with a and b being the multiplicative gain and additive offset respectively. The gain 
and offset values vary from pixel to pixel and may vary slowly over time. Current 
infra-red focal point arrays (IRFPAs) are limited by their inability to calibrate out 
component variations [3] . Typically, off-board digital calibration is used to correct 
nonuniformities in these detector arrays; Special calibration images are used to 
calibrate the system at startup. One-time calibration procedures such as these do 
not take into account other operating points and will fail to recalibrate for any drift 
in the parameters. 

2 Implementing Natural Constraints 

A continuous calibration system must take advantage of natural constraints avail­
able during the normal operation of the sensors. One theory holds that biological 
systems adapt to the long-term average of the stimulus. For example, the con­
straints for the three psychophysical examples mentioned above (curvature, motion 
and color adaptation) may rely on the following constraints: 
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• The average line is straight. 

• The average motion is zero. 

• The average color is gray. 

The system adapts over time in the direction of this average, where the average 
must be taken over a very long time: from minutes to hours. We use two additional 
constraints for offset/gain normalization, namely: 

• The average pixel intensities are identical. 

• The variances of the input for each pixel are all identical. 

Each of these constraints assumes that the photoarray is periodically moving in 
the real-world and that the average statistics each pixels sees should be constant 
when averaged over a very long time. In pathological situations where humans or 
machines are forced to stare at a single static scene for a long time, we violate this 
assumption. 

We estimate the time-varying mean and variance by using an exponentially shaped 
window into the past. The equations for mean and variance are: 

m(t) = - y(t - b.)e-tJ,./T db. 1100 

T 0 
(2) 

and 

s(t) = - Iy(t - b.) - m(t - b.)le-tJ,./T db. 1100 

T 0 
(3) 

The m(t) and s(t) in Equation 2 and 3 can be expressed as low-pass filters with 
inputs y(t) and Iy(t) - m(t)1 respectively. To simplify the hardware implementation 
further, we chose the Ll (absolute value) definition of variance instead of the more 
usual L2 definition. The Ll definition is an equally acceptable definition of signal 
variation in terms of the complete calibration system. Using this definition, no 
squares or square roots need be calculated. An added benefit of the Ll norm is that 
it provides robustness to outliers in the estimation. 

A zero-mean, unity variance 1 signal can then be produced with the following shift/ 
normalization formula: 

x(t) = y(t) - m(t) 
s(t) 

(4) 

Equation 2, Equation 3 and Equation 4 constitute a new algorithm for continuously 
calibrating systems with gain and offset variations. Note that without additional 
apriori knowledge about the values of the gains and offsets, it is impossible to recover 
the true value of the signal x(t) given an infinite history of y(t). This is an ill-posed 
problem even with fixed but unknown gain and offset parameters for each sensor. 
All that can be done is to calibrate each sensor output to have zero offset and unity 
variance. After calibration, each sensor would therefore all have the same offset and 
variance when averaged over a long time. The fundamental assumption embedded 

1 For simplicity the signal s(t) will be called the variance estimate throughout the rest of 
this paper even though technically s(t) is neither the variance nor the standard deviation. 
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Figure 1: Left: block diagram of continuous-time calibration system, Right: 
schematic of the divider circuit. 

in this algorithm is that each sensor measures real-world quantities with the same 
statistical properties (e.g., mean and variance). For example, this would mean 
that all pixels in a camera should eventually see the same average intensity when 
integrated over a long enough time. This assumption leads to other system-level 
constraints-in this case, the camera must be periodically moving. 

We have successfully demonstrated this algorithm in software for the case of nonuni­
formity (gain and offset) correction of images [6]. Since there may be potentially 
thousands of sensors per chip, it is desirable to build calibration circuitry using 
subthreshold analog MOS technology to achieve ultra-low power consumption[8]. 
The next section describes the analog VLSI implementation of this algorithm. 

3 Continuous-time calibration circuit 

The block diagram of the continuous-time gain and offset calibration circuit is shown 
in Figure 1a. This system includes three building blocks: a mean estimation circuit, 
a variance estimation circuit and a divider circuit. As is shown, the mean of the 
signal can be easily extracted by a RC low-pass filter circuit. Since there may 
be potentially thousands of sensors per chip, it is desirable to build calibration 
circuitry using subthreshold analog MOS technology to achieve ultra-low power 
consumption[8] . 

Figure 2 shows the schematic of the variance estimation circuit. A full-wave recti­
fier [8] operating in the sub-threshold region is used to obtain the absolute value 
of the difference between the input and its mean. In the linear region, the current 
lout is proportional to Iy(t) - m(t)l. As indicated in Equation 3, lout has to be 
low-pass filtered to obtain s(t). In Figure 2, transconductance amplifiers A3 , A4 
and capacitor C2 are used to form a current mode low-pass filter. For signals in the 
linear region, we can derive the Laplace transform of VI as: 

R 
Vt (s) = RC2 S + 1Iout(s) (5) 

which is a first-order low-pass filter for lout. The value of R is a function of several 
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Figure 2: Variance estimation circuit. The triangle symbols represent 5-transistor 
transconductance amplifiers that output a current proportional to the difference of 
their inputs. 

fabrication constants and an adjustable bias current. Figure 3(a) shows the ex­
pected linear relationship between the measured variance s(t) and the peak-to-peak 
amplitude of the sine-wave input. 

The third building block in the calibration system is the divider circuit shown in 
Figure lb. A fed-back multiplier is used to enforce the constraint that y(t) - m(t) 
is proportional to x(t)s(t) which results in a scaled version of Equation 4. The 
characteristics of the divider have been measured and shown in Figure 3(b). With 
a fixed Vb6 and m(t), we sweep y(t) from m(t) - 0.3V to m(t) + 0.3V and measure 
the the change of output. A family of input/output characteristics with s(t) =20, 
25, 30, 40, 50, 60 and 70nA is shown in Figure 3(b). The divider circuit has been 
tested up to frequencies of 45kHz. 

The first version of the calibration circuit has been designed and fabricated in a 
2-um CMOS technology. The chip includes the major parts of this calibration 
circuit: the variance estimation circuit and divider circuit. In our initial design, the 
mean estimation circuit, which is simply a RC low-pass filter, was built off-chip. 
However, it can be easily integrated on-chip using a transconductance amplifier and 
a capacitor. 

The calibration results for a signal with gain and offset variations are shown in 
Figure 4. The input signal is a sine wave with a severe gain and offset jump as 
shown at the top of Figure 4. At the middle of Figure 4, the convergence of the 
variance estimation is illustrated. It takes a short time for the circuit to converge 
after any change of the mean or variance or of the input signal. At the bottom of 
Figure 4, we show the calibrated signal produced by the chip. The output eventually 
converges to a zero-mean, constant-height sine wave independent of the values of 
the DC offset and amplitude of the input sine wave. Additional experiments have 
shown that with the input amplitude changing from 20mV to 90mV, the measured 
output amplitude varies by less than 3mV. Similarly, when the DC offset is varied 
from l.5V to 3.5V, the amplitude of the output varies by less than 5mV. These 
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Figure 3: Left (a) shows the characteristics of measured variance s{t) vs. peak­
to-peak input voltage. Right (b) shows the characteristics of divider with different 
s{t). 

results demonstrate that system is invariant to gain and offset variations of the 
input. 

4 Conclusions 

The calibration circuit has been demonstrated with the time-constants on the order 
of lOOms. In many applications, much longer time constants will be necessarily and 
these cannot be reached with on-chip capacitors even with subthreshold CMOS 
operation. We expect to use floating-gate techniques where essentially arbitrarily 
long time-constants can be achieved. Mead has demonstrated a novel adaptive 
adaptive silicon retina that requires UV light for adaptation to occur [7]. The 
adaptive silicon retina implemented the constant average brightness constraint. The 
unoptimized layout area of one of our calibration circuits is about 250x300 um2 in 
2um CMOS technology. A future challenge will be to reduce this area and replace 
the large on-chip capacitors with floating gates. 
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