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Abstract 

In 1990 Poggio and Edelman proposed a view-based model of ob­
ject recognition that accounts for several psychophysical properties 
of certain recognition tasks. The model predicted the existence of 
view-tuned and view-invariant units, that were later found by Lo­
gothetis et al. (Logothetis et al., 1995) in IT cortex of monkeys 
trained with views of specific paperclip objects. The model, how­
ever, does not specify the inputs to the view-tuned units and their 
internal organization. In this paper we propose a model of these 
view-tuned units that is consistent with physiological data from 
single cell responses. 

1 INTRODUCTION 

Recognition of specific objects, such as recognition of a particular face, can be 
based on representations that are object centered, such as 3D structural models. 
Alternatively, a 3D object may be represented for the purpose of recognition in 
terms of a set of views. This latter class of models is biologically attractive because 
model acquisition - the learning phase - is simpler and more natural. 

A simple model for this strategy of object recognition was proposed by Poggio and 
Edelman (Poggio and Edelman, 1990). They showed that, with few views of an ob­
ject used as training examples, a classification network, such as a Gaussian radial 
basis function network, can learn to recognize novel views of that object, in partic-
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Figure 1: (a) Schematic representation of the architecture of the Poggio-Edelman 
model. The shaded circles correspond to the view-tuned units, each tuned to a view 
of the object, while the open circle correspond to the view-invariant, object specific 
output unit. (b) Tuning curves ofthe view-tuned (gray) and view-invariant (black) 
units. 

ular views obtained by in depth rotation of the object (translation, rotation in the 
image plane and scale are probably taken care by object independent mechanisms). 
The model, sketched in Figure 1, makes several prediction about limited general­
ization from a single training view and about characteristic generalization patterns 
between two or more training views (Biilthoff and Edelman, 1992) . Psychophysical 
and neurophysiological results support the main features and predictions of this 
simple model. For instance, in the case of novel objects, it has been shown that 
when subjects -both humans and monkeys- are asked to learn an object from a sin­
gle unoccluded view, their performance decays as they are tested on views farther 
away from the learned one (Biilthoff and Edelman, 1992; Tarr and Pinker, 1991; 
Logothetis et al., 1994). Additional work has shown that even when 3D information 
is provided during training and testing, subjects recognize in a view dependent way 
and cannot generalize beyond 40 degrees from a single training view (Sinha and 
Poggio, 1994). 

Even more significantly, recent recordings in inferotemporal cortex (IT) of monkeys 
performing a similar recognition task with paperclip and amoeba-like objects, re­
vealed cells tuned to specific views of the learned object (Logothetis et al., 1995). 
The tuning, an example of which is shown in Figure 3, was presumably acquired as 
an effect of the training to views of the particular object. Thus an object can be 
thought as represented by a set of cells tuned to several of its views, consistently 
with finding of others (Wachsmuth et al., 1994). This simple model can be extended 
to deal with symmetric objects (Poggio and Vetter, 1992) as well as objects which 
are members of a nice class (Vetter et al., 1995): in both cases generalization from 
a single view may be significantly greater than for objects such as the paperclips 
used in the psychophysical and physiological experiments. 

The original model of Poggio and Edelman has a major weakness: it does not 
specify which features are inputs to the view-tuned units and what is stored as a 
representation of a view in each unit. The simulation data they presented employed 
features such as the x,y coordinates of the object vertices in the image plane or the 
angles between successive segments. This representation, however, is biologically 
implausible and specific for objects that have easily detectable vertices and measur­
able angles, like paperclips. In this paper, we suggest a view representation which 
is more biologically plausible and applies to a wider variety of cases. We will also 
show that this extension of the Poggio-Edelman model leads to properties that are 
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Figure 2: Model overview: during the training phase the images are first filtered 
through a bank of steerable filters. Then a number of image locations are chosen 
by an attentional mechanism and the vector of filtered values at these locations is 
stored in the feature units. 

consistent with the cell response to the same objects. 

2 A MODEL OF VIEW-TUNED UNITS 

Our approach consists in representing a view in terms of a few local features, which 
can be regarded as local configurations of grey-levels . Suppose one point in the 
image of the object is chosen. A feature vector is computed by filtering the image 
with a set of filters with small support centered at the chosen location. The vector 
of filter responses serves as a description of the local pattern in the image. Four 
such points were chosen, for example, in the image of Figure 3a, where the white 
squares indicate the support of the bank of filters that were used. Since the support 
is local but finite, the value of each filter depends on the pattern contained in the 
support and not only on the center pixel; since there are several filters one expects 
that the vector of values may uniquely represent the local feature, for instance a 
corner of the paperclip. 

We used filters that are somewhat similar to oriented receptive fields in VI (though 
it is far from being clear whether some VI cells behave as linear filters). The ten 
filters we used are the same steerable filters (Freeman and Adelson, 1991) suggested 
by Ballard and Rao (Rao and Ballard, 1995; Leung et al., 1995). The filters were 
chosen to be a basis of steerable 2-dimensional filters up to the third order . If Gn 
represents the nth derivative of a Gaussian in the x direction and we define the 
rotation operator ( ... )9 as the operator that rotates a function through an angle 0 
about the origin, the ten basis filters are: 

G9k n = 0, 1,2,3 
n O,,=O, .. . ,k'rr/(n+l),k=I, ... n (1) 
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Therefore for each one of the chosen locations m in the image we have a lO-value 
array Tm given by the output of the filters bank. 

The representation of a given view of an object is then the following. First m = 
1, ... , M locations are chosen, then for each of these M locations the lO-valued 
vectors Tm are computed and stored. These M vectors, with M typically between 
1 and 4, form the representation of the view which is learned and commited to 
memory. 

How are the locations chosen? Precise location is not critical. Feature locations 
can be chosen almost randomly. Of course each specific choice will influence prop­
erties of the unit but precise location does not affect the qualitative properties of 
the model, as verified in simulation experiments. Intuitively, features should be 
centered at salient locations in the object where there are large changes in contrast 
and curvature. We have implemented (Riesenhuber and Bricolo, in preparation) 
a simple attentional mechanism that chooses locations close to edges with various 
orientations I . The locations shown in Figures 3 and 4 were obtained with this un­
supervised technique. We emphasize however that all the results and conclusions 
of this paper do not depend on the specific location of the feature or the precise 
procedure used to choose them. 

We have described so far the learning phase and how views are represented and 
stored. When a new image V is presented, recognition takes place in the following 
way. First the new image is filtered through the bank of filters. Thus at each pixel 
location i we have the vector of values fi provided by the filters. Now consider the 
first stored vector T I. The closest ft is found searching over all i locations and 
the distance DI = IITI - ftll is computed. This process is repeated for the other 
feature vectors Tm for m = 2, ... , M. Thus for the new image V, M distances Dm 
are computed; the distance Dm is therefore the distance to the stored feature T m 

of the closest image vector searched over the whole image. 

The model uses these M distances as exponents in M Gaussian units. The output 
of the system is a weighted average of the output of these units with an output non 
linearity of the sigmoidal type: 

( 
M D:l) 

YV=h LCme-~ 
m=l 

(3) 

In the simulations presented in this paper we estimated (J' from the distribution 
of distances over several images; the Cm are Cm = M-I, since we have only one 
training view; h is hex) = 1/(1 - e- X ). 

In Figure 3b we see the result obtained by simply combining linearly the output of 
the four feature detectors followed by the sigmoidal non linearity (Figure 4a shows 
another example). We have also experimented with a multiplicative combination 
of the output of the feature units. In this case the system performs an AND of 
the M features. If the response to the distractors is used to set a threshold for 

1 A saliency map is at first constructed as the average of the convolutions of the image 
with four directional filters (first order steer able filters with 0 = 0, ... , k7r /( 4), k = 1, .. .4). 
The locations with higher saliency are extracted one at the time. After each selection, a 
region around the selected position is inhibited to avoid selecting the same feature over 
again. 
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Figure 3: Comparison between a model view-tuned unit and cortical neuron tuned 
to a view of the same object. (a) Mean spike rate of an inferotemporal cortex 
cell recorded in response to views of a specific paperclip Oeft] and to a set of 60 
distractor paperclip objects [right]'(Logothetis and Pauls, personal communication). 
(b) Model response for the same set of objects. This is representative for other cells 
we have simulated, thought there is considerable variability in the cells (and the 
model) tuning. 

classification, then the two versions of the system behave in a similar way. Similar 
results (not shown) were obtained using other kinds of objects. 

3 RESULTS 

3.1 COMPARISON BETWEEN VIEW-TUNED UNITS AND 
CORTICAL NEURONS 

Electrophysiological investigations in alert monkeys, trained to recognize wire-like 
objects presented from any view show that the discharge rate of many IT neurons is 
a bell-shaped function of orientation centered on a preferred view (Logothetis et aI., 
1995). The properties of the units here described are comparable to those of the 
cortical neurons (see Figure 3). The model was tested with the exactly the same 
objects used in the physiological experiments. As training view for the model we 
used the view preferred by the cell (the cell became tuned presumably as an effect 
of training during which the monkey was shown in this particular case several views 
of this object). 

3.2 OCCLUSION EXPERIMENTS 

What physiological experiments could lend additional support to our model? A 
natural question concerns the behavior of the cells when various parts of the object 
are occluded. The predictions of our model are given in Figure 4 for a specific object 
and a specific choice of feature units (m = 4) and locations. 
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Figure 4: (a) Model behavior in response to a learned object in full view (highlighted 
on the learned image are the positions of the four features) at different rotations and 
to 120 other paperclip objects (distractors), (b) Response dependence on occluder 
characteristics: (i) object in full view at learned location, (ii) object occluded with 
a small occluder, (iii) occluded region in (ii) presented in isolation, (iv-v) same as 
(ii-iii) but with a larger occluder. 

The simulations show that the behavior depends on the position of key features with 
respect to the occluder itself. Occluding a part of the object can drastically reduce 
the response to that specific view (Figure 4b(ii-iv» because of interference with 
more than one feature. But since the occluded region does not completely overlap 
with the occluded featUres (considering the support of the filters) , the presentation 
of this region alone does not always evoke a significant response (Figure 4b(iii-v». 

4 Discussion 

Poggio and Edelman model was designed specifically for paperclip objects and did 
not explicitly specify how to compute the response for any object and image. In 
this paper we fill this gap and propose a model of these IT cells that become view 
tuned as an effect of training. The key aspect of the model is that it relies on a 
few local features (1-4) that are computed and stored during the training phase. 
Each feature is represented as the set of responses of oriented filters at one location 
in the image. During recognition the system computes a robust conjunction of the 
best matches to the stored features. 

Clearly, the version of the model described here does not exploit information about 
the geometric configuration of the features. This information is available once the 
features are detected and can be critical to perform more robust recognition. We 
have devised a model of how to use the relative position of the features ft in the 
image. The model can be made translation and scale invariant in a biologically 
plausible way by using a network of cells with linear receptive fields, similar in spirit 
to a model proposed for spatial representation in the parietal cortex (Pouget and 
Sejnowski, 1996). Interestingly enough, this additional information is not needed 
to account for the selectivity and the generalization properties of the IT cells we 
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have considered so far. The implication is that IT cells may not be sensitive to 
the overall configuration of the stimulus but to the presence of moderately complex 
local features (according to our simulations, the number of necessary local features 
is greater than one for the most selective neurons, such as the one of Figure 3a). 
Scrambling the image of the object should therefore preserve the selectivity of the 
neurons, provided this can be done without affecting the filtering stage. In practice 
this may be very difficult. Though our model is still far from being a reasonable 
neuronal model, it can already be used to make useful predictions for physiological 
experiments which are presently underway. 

References 

Biilthoff, H. and Edelman, S. (1992). Psychophisical support for a two-dimensional 
view interpolation theory of object recognition. Proceedings of the National 
Academy of Science. USA, 89:60-64. . 

Freeman, W. and Adelson, E. (1991). The design and use of steerable filters. IEEE 
transactions on Pattern Analysis and Machine Intelligence, 13(9) :891-906 . 

Leung, T., Burl, M., and Perona, P. (1995). Finding faces in cluttered scenes 
using random labelled graph matching. In Proceedings of the 5th Internatinal 
Conference on Computer Vision, Cambridge, Ma. 

Logothetis, N., Pauls, J., Biilthoff, H., and Poggio, T. (1994). View dependent 
object recognition by monkeys. Current Biology, 4(5):401-414. 

Logothetis, N., Pauls, J., and Poggio, T . (1995) . Shape representation in the inferior 
temporal cortex of monkeys. Current Biology, 5(5):552- 563. 

Poggio, T . and Edelman, S. (1990) . A network that learns to recognize three­
dimensional objects. Nature, 343:263-266. 

Poggio, T. and Vetter, T. (1992). Recognition and structure from one 2d model view: 
observations on prototypes, object classes and symmetries. Technical Report 
A.1. Memo No.1347, Massachusetts Institute of Technnology, Cambridge, Ma. 

Pouget, A. and Sejnowski, T. (1996). Spatial representations in the parietal cortex 
may use basis functions. In Tesauro, G., Touretzky, D., and Leen, T., editors, 
Advances in Neural Information Processing Systems, volume 7, pages 157-164. 
MIT Press. 

Rao, R. and Ballard, D. (1995). An active vision architecture based on iconic 
representations. Artificial Intelligence Journal, 78:461-505. 

Sinha, P. and Poggio, T. (1994) . View-based strategies for 3d object recognition. 
Technical Report A.1. Memo No.1518, Massachusetts Institute of Technnology, 
Cambridge, Ma. 

Tarr, M. and Pinker, S. (1991). Orientation-dependent mechanisms in shape recog­
nition: further issues. Psychological Science, 2(3):207- 209 . 

Vetter, T., Hurlbert, A., and Poggio, T. (1995). View-based models of 3d object 
recognition: Invariance to imaging transformations. Cerebral Cortex, 3(261-
269). 

Wachsmuth, E., Oram, M., and Perrett, D. (1994). Recognition of objects and 
their component parts: Responses of single units in the temporal cortex of the 
macaque. Cerebral Cortex, 4(5):509-522. 


