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Abstract

Results of a study of the worst case learning curves for a partic-
ular class of probability distribution on input space to MLP with
hard threshold hidden units are presented. It is shown in partic-
ular, that in the thermodynamic limit for scaling by the number
of connections to the first hidden layer, although the true learning
curve behaves as &~ a~! for a & 1, its VC-dimension based bound
is trivial (= 1) and its VC-entropy bound is trivial for a < 6.2. It
is also shown that bounds following the true learning curve can be
derived from a formalism based on the density of error patterns.

1 Introduction

The VC-formalism and its extensions link the generalisation capabilities of a binary
valued neural network with its counting function!, e.g. via upper bounds implied by
VC-dimension or VC-entropy on this function [17, 18]. For linear perceptrons the
counting function is constant for almost every selection of a fixed number of input
samples [2], and essentially equal to its upper bound determined by VC-dimension
and Sauer’s Lemma. However, in the case for multilayer perceptrons (MLP) the
counting function depends essentially on the selected input samples. For instance,
it has been shown recently that for MLP with sigmoidal units although the largest
number of input samples which can be shattered, i.e. VC-dimension, equals Q(w?)
[6], there is always a non-zero probability of finding a (2w + 2)-element input sample
which cannot be shattered, where w is the number of weights in the network [16].
In the case of MLP using Heaviside rather than sigmoidal activations (McCulloch-
Pitts neurons), a similar claim can be made: VC-dimension is Q(w;logaH; ) [13, 15],

"Known also as the partition function in computational learning theory.
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where w; is the number of weights to the first hidden layer of H; units, but there is
a non-zero probability of finding a sample of size wy + 2 which cannot be shattered
(7, 8]. The results on these “hard to shatter samples” for the two MLP types
differ significantly in terms of techniques used for derivation. For the sigmoidal
case the result is “existential” (based on recent advances in “model theory”) while
in the Heaviside case the proofs are constructive, defining a class of probability
distributions from which “hard to shatter” samples can be drawn randomly; the
results in this case are also more explicit in that a form for the counting function
may be given (7, 8].

Can the existence of such hard to shatter samples be essential for generalisation
capabilities of MLP? Can they be an essential factor for improvement of theoretical
models of generalisation? In this paper we show that at least for the McCulloch-
Pitts case with specific (continuous) probability distributions on the input space
the answer is “yes”. We estimate “directly” the real learning curve in this case and
show that its bounds based on VC-dimension or VC-entropy are loose at low learning
sample regimes (for training samples having less than 12 x w; examples) even for
the linear perceptron. We also show that a modification to the VC-formalism given
in [9, 10] provides a significantly better bound. This latter part is a more rigorous
and formal extension and re-interpretation of some results in [11, 12]. All the results
are presented in the thermodynamic limit, i.e. for MLP with w; — oo and training
sample size increasing proportionally, which simplifies their mathematical form.

2 Overview of the formalism

On a sample space X we consider a class H of binary functions h : X — {0,1}
which we shall call a hypothesis space. Further we assume that there are given a
probability distribution u on X and a target conceptt : X — {0,1}. The quadruple
L = (X, u,H,t) will be called a learning system.

In the usual way, with each hypothesis h € H we associate the generalization error
en @ Ex [It(z) — h(z)|] and the training error € z & L 30 |t(zi) — h(z)| for

any training m-sample £ = (1,...,&,) € X™.
Given a learning threshold 0 < A < 1, let us introduce an auxiliary random variable

o d ~ .
eN2*(Z) <! max{es ; h € H & e,z < A} for £ € X™, giving the worst general-
ization error of all hypotheses with training error < A on the m-sample ¥ € X™. 2
The basic objects of interest in this paper are the learning curve® defined as

eve(m) < Exnl[ed™(2)).

2.1 Thermodynamic limit

Now we introduce the thermodynamic limit of the learning curve. The underly-
ing idea of such asymptotic analysis is to capture the essential features of learning

?In this paper max(S), where S C R, denotes the maximal element in the closure of S,
or co if no such element exists. Similarly, we understand min(S).

*Note that our learning curve is determined by the worst generalisation error of accept-
able hypotheses and in this respect differs from “average generalisation error” learning
curves considered elsewhere, e.g. 3, 5).
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systems of very large size. Mathematically it turns out that in the thermodynamic
limit the functional forms of learning curves simplify significantly and analytic char-
acterizations of these are possible.

We are given a sequence of learning systems, or shortly, Ln = (Xn,un,HnN,tN),
N =1,2,... and a scaling N — 7n € R*, with the property v — 00; the scaling
can be thought of as a measure of the size (complexity) of a learning system, e.g.
VC-dimension of Hy. The thermodynamic limit of scaled learning curves is defined
for a > 0 as follows *

s (2) < limsup ey (lamn ), (1)
N—oo
Here, and below, the additional subscript N refers to the N-th learning system.

2.2 Error pattern density formalism

This subsection briefly presents a thermodynamic version of a modified VC formal-
ism discussed previously in [9]; more details and proofs can be found in [10]. The
main innovation of this approach comes from splitting error patterns into error shells
and using estimates on the size of these error shells rather than the total number
of error patterns. We shall see on examples discussed in the following section that
this improves results significantly.

The space {0,1}™ of all binary m-vectors naturally splits into m + 1 error pattern
shells £, i = 0,1, ...,m, with the i-th shell composed of all vectors with exactly 2
entries equal to 1. For each h € H and 7 = (24, ...,Zm) € X™, let 04(Z) € {0,1}™
denote a vector (error pattern) having 1 in the j-th position if and only if h(z;) #
t(z;). As the i-th error shell has (') elements, the average error pattern density
falling into this error shell is

-1
Ar (") Exn#(#(@); he HYNEM)]  (i=0,1,..,m), 2)
where # denotes the cardinality of a set® .

Theorem 1 Given a sequence of learning systems Ln = (Xn,un, Hn,tN), a scal-
ing Ty and a function ¢ : R x (0,1) = R* such that

In (A7) < —7ne (EM%) +o(rn), @)

forallm,N =1,2,...,0<i<m.
Then

€xoo (@) < €xp(a), (4)

“We recall that |z| denotes the largest integer < z and limsupy_,., zn~ is defined as
limy o of the monotonic sequence N — max{z1,z2,...,#n}. Note that in contrast to
the ordinary limit, lim sup always exists.

®Note the difference to the concept of error shells used in [4] which are partitions of the
finite hypothesis space H according to the generalisation error values. Both formalisms
are related though, and the central result in [4], Theorem 4, can be derived from our
Theorem 1 below.
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forany 0 < A <1 and a,3 > 0, where

exs(a) def maX{E €(0,1); Jo<y<a a(H(y) + BH(z)) — ¢ (a + ap, y_tgf) > 0}
e<z< 1+48

and H(y) et —yIny — (1 — y) In(1 — y) denotes the entropy function.

3 Main results : applications of the formalism

3.1 VC-bounds

We consider a learning sequence Ly = (Xn,un,Hn,tn), tn € Hy (realisable
case) and the scaling of this sequence by VC-dimension [17], i.e. we assume 7y =
dyc(HN) — 0. The following bounds for the N-th learning system can be derived
for A = 0 (consistent learning case) [1, 17]:

1 dvc(Hn)
egn(m) < /0 min (1,22_”“/2 (aﬁ-—%ﬁ) ) de. (5)

In the thermodynamic limit, i.e. as N — oo, we get for any a > 1/e

2log,(2ea) ) , (6)

€o(@) < min (1, =

Note that this bound is independent of probability distributions px.

3.2 Piecewise constant functions

Let PC(d) denote the class of piecewise constant binary functions on the unit
segment [0,1) with up to d > 0 discontinuities and with their values defined as
1 at all these discontinuity points. We consider here the learning sequence Ln =
([0,1), un, PC(dn),tn) where pun is any continuous probability distributions on
[0,1), dn is a monotonic sequence of positive integers diverging to oo and targets

tn € PC(d,) are such that the limit &, e imy_S 00 ;‘?: exists. (Without loss of
generality we can assume that all uy are the uniform distribution on [0,1).)

For this learning sequence the following can be established.

Claim 1. The following function defined fora >1and 0 <z <1 as

ole,z) Y —a(l -2)H (g—iflﬂs_‘z—)) — ozt (3%) + aM(z) for20z(l-2)>1,

and as 0, otherwise, satisfies assumption (3) with respect to the scaling Tn e dn.

Claim 2. The following two sided bound on the learning curve holds:

‘—?ai: (1+In(2a7)) < e¥s(a) < 20% (1+In(2a™)) (7)

fora)l,OSASlandOSétga,\ﬂ, where a™ déf m,ﬂ"' déf m.
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We outline the main steps of proof of these two claims now.

For Claim 1 we start with a combinatorial argument establishing that in the par-
ticular case of constant target

My = { (T__ll )_1 E?_—N_éz (m;'_‘l_l ) (5;1) for d + d; < min(2¢,2(m — 7)),
‘ 1

otherwise.

Next we obhserve that that the above sum equals

eo(d!\f] o i (m "" f:) (I)) = elnaxUS‘S"f"‘ a{l-—z]?{(m)+azﬂ(ﬁ;)+o(d3\r)-
0<j<dn /2 J J

This easily gives Claim 1 for constant target (§; = 0). Now we observe that this
particular case gives an upper bound for the general case (of non-constant target)
if we use the “effective” number of discontinuities dny + d;, instead of dx.

For Claim 2 we start with the estimate [12, 11]

i=ldn/2j+1 7 i=ldn/2)+27

derived from the Mauldon result [14] for the constant target txy = const, m > dn.
This implies immediately the expression

et (@) = 5 (1+1n(20) . (®)

for the constant target, which extends to the estimate (7) with a straightforward
lower and upper bound on the “effective” number of discontinuities in the case of a
non-constant target.

3.3 Link to multilayer perceptron

Let M LP™(w,) denote the class of function from R" to {0, 1} which can be imple-
mented by a multilayer perceptron (feedforward neural network) with > 1 number
of hidden layers, with w; connections to the first hidden layer and the first hidden
layer composed entirely of fully connected, linear threshold logic units (i.e. units
able to implement any mapping of the form (z1,..,z,) = 8(ao + Y., a;iz;) for
a; € R). It can be shown from the properties of Vandermonde determinant (c.f.
(7, 8]) that if f: [0,1) —» R" is a mapping with coordinates composed of linearly
independent polynomials (generic situation) of degree < n, then

PC(w,) = f*MLP™(w,) ¥ {hof; h € MLP™w,)}. (9)

This implies immediately that all results for learning the class of PC functions in
Section 5.2 are applicable (with obvious modifications) to this class of multilayer
perceptrons with probability distribution concentrated on the 1-dimensional curves
of the form f([0,1)) with f as above.

However, we can go a step further. We can extend such a distribution to a con-
tinuous distribution on R™ with support “sufficiently close” to the curve f([0,1)),
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Figure 1: Plots of different estimates for thermodynamic limit of learning curves for
the sequence of multilayer perceptrons as in Claim 3 for consistent learning (A = 0).
Estimates on true learning curve from (7) are for §; = 0 (‘TC0’) and §; = 0.2 (‘TC+’
and ‘TC-’ for the upper and lower bound, respectively). Two upper bounds of the
form (4) from the modified VC-formalism for ¢ as in Claim 1 and 8 = 1 are plotted
for 6; = 0.0 and é; = 0.2 (marked EPD). For comparison, we plot also the bound
(10) based on the VC-entropy; VC bound (5) being trivial for this scaling, = 1, c.f.
Corollary 2, is not shown.

with changes to the error pattern densities ATy, the learning curves, etc., as small
as desired. This observation implies the following result:

Claim 3 For any sequence of multilayer perceptrons, M LP"™N (w;n), uhnN —
0o, there exists a sequence of continuous probability distributions un on
R"™ with properties as follows. For any sequence of targets ty €
MLP™ (wy,), both Claim 1 and Claim 2 of Section 3.2 hold for the learn-

ing sequence (R““,p.N,MLP““ (wm),tN) with scaling Tn el mny and 6 =
limy o0 w1ty /win. In particular bound (4) on the learning curve holds for ¢
as in Claim 1.

Corollary 2 If additionally the number of units in first hidden layer Hin — 00,
then the thermodynamic limit of VC-bound (5) with respect to the scaling T =
wy N IS trivial, i.e. =1 for all a > 0.

Proof. The bound (5) is trivial for m < 12dn, where dy def dyvc(MLP™ (wyy)).
As dy = Q(win logy(Hin)) [13, 15] for any continuous probability on the input
space, this bound is trivial for any a = 2 <1228 — o0 if N - 00.

=3
There is a possibility that VC dimension based bounds are applicable but fail to cap-
ture the true behavior because of their independence from the distribution. One op-
tion to remedy the situation is to try a distribution-specific estimate such as VC en-
tropy (i.e. the expectation of the logarithm of the counting function x(z1, ...,Zm)
which is the number of dichotomies realised by the perceptron for the m-tuple
of input points [18]). However, in our case, IIy(zi,...,2,) has the lower bound
22?_‘__‘3(‘”‘"”‘”'_1) ("), for 2, ...,2m in general position, which is virtually the ex-
pression from Sauer’s lemma with VC-dimension replaced by win/2. Thus using



196 A. Kowalczyk and H. Ferrd

VC entropy instead of VC dimension (and Sauer’s Lemma) we cannot hope for
a better result than bounds of the form (5) with w;n /2 replacing VC-dimension
resulting in the bound

€4°(e) <min(l,a" ' log,(4ea)) (a > 1/e) (10)

in the thermodynamic limit with respect to the scaling 74 = win. (Note that
more “optimistic” VC entropy based bounds can be obtained if prior distribution
on hypothesis space is given and taken into account [3].)

The plots of learning curves are shown in Figure 1.
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