
Multi-Task Learning for Stock Selection 

Joumana Ghosn 
Dept. Informatique et 

Recherche Operationnelle 
Universite de Montreal 
Montreal, Qc H3C-3J7 

ghosn~iro.umontreal.ca 

Yoshua Bengio * 
Dept. Informatique et 

Recherche Operationnelle 
Universite de Montreal 
Montreal, Qc H3C-3J7 

bengioy~iro.umontreal . ca 

Abstract 

Artificial Neural Networks can be used to predict future returns 
of stocks in order to take financial decisions . Should one build a 
separate network for each stock or share the same network for all 
the stocks? In this paper we also explore other alternatives, in 
which some layers are shared and others are not shared. When 
the prediction of future returns for different stocks are viewed as 
different tasks, sharing some parameters across stocks is a form 
of multi-task learning. In a series of experiments with Canadian 
stocks, we obtain yearly returns that are more than 14% above 
various benchmarks. 

1 Introd uction 

Previous applications of ANNs to financial time-series suggest that several of these 
prediction and decision-taking tasks present sufficient non-linearities to justify the 
use of ANNs (Refenes , 1994; Moody, Levin and Rehfuss, 1993). These models can 
incorporate various types of explanatory variables: so-called technical variables (de­
pending on the past price sequence) , micro-economic stock-specific variables (such 
as measures of company profitability), and macro-economic variables (which give 
information about the business cycle). 

One question addressed in this paper is whether the way to treat these different vari­
ables should be different for different stocks , i.e., should one use the same network 
for all the stocks or a different network for each stock? To explore this question 

"also, AT&T Labs, Holmdel, NJ 07733 



Multi-Task Learning/or Stock Selection 947 

we performed a series of experiments in which different subsets of parameters are 
shared across the different stock models. When the prediction of future returns for 
different stocks are viewed as different tasks (which may nonetheless have some­
thing in common), sharing some parameters across stocks is a form of multi-task 
learning. 

These experiments were performed on 9 years of data concerning 35 large capital­
ization companies of the Toronto Stock Exchange (TSE). Following the results of 
previous experiments (Bengio, 1996), the networks were not trained to predict the 
future return of stocks, but instead to directly optimize a financial criterion. This 
has been found to yield returns that are significantly superior to training the ANNs 
to minimize the mean squared prediction error. 

In section 2, we review previous work on multi-task. In section 3, we describe the 
financial task that we have considered, and the experimental setup. In section 4, 
we present the results of these experiments. In section 5, we propose an extension 
of this work in which the models are re-parameterized so as to automatically learn 
what must be shared and what need not be shared. 

2 Parameter Sharing and Multi-Task Learning 

Most research on ANNs has been concerned with tabula rasa learning. The learner 
is given a set of examples (Xl, yr), (X2' Y2), ... , (XN , YN) chosen according to some 
unknown probability distribution. Each pair (x, y) represents an input x, and a 
desired value y. One defines a training criterion C to be minimized in function 
of the desired outputs and of the outputs of the learner f(x). The function f is 
parameterized by the parameters of the network and belongs to a set of hypotheses 
H, that is the set of all functions that can be realized for different values of the 
parameters. The part of generalization error due to variance (due to the specific 
choice of training examples) can be controlled by making strong assumptions on 
the model, i.e., by choosing a small hypotheses space H . But using an incorrect 
model also worsens performance. 

Over the last few years, methods for automatically choosing H based on similar 
tasks have been studied. They consider that a learner is embedded in a world 
where it faces many related tasks and that the knowledge acquired when learn­
ing a task can be used to learn better and/or faster a new task. Some methods 
consider that the related tasks are not always all available at the same time (Pratt, 
1993; Silver and Mercer, 1995): knowledge acquired when learning a previous task 
is transferred to a new task. Instead, all tasks may be learned in parallel (Baxter, 
1995; Caruana, 1995), and this is the approach followed here. Our objective is not 
to use multi-task learning to improve the speed of learning the training data (Pratt, 
1993; Silver and Mercer, 1995), but instead to improve generalization performance. 
For example, in (Baxter, 1995), several neural networks (one for each task) are 
trained simultaneouly. The networks share their first hidden layers, while all the 
remaining layers are specific to each network. The shared layers use the knowledge 
provided from the training examples of all the tasks to build an internal represen­
tation suitable for all these tasks. The remaining layers of each network use the 
internal representation to learn a specific task. 

In the multitask learning method used by Caruana (Caruana, 1995), all the hidden 



948 J. Ghosn and Y. Bengio 

layers are shared. They serve as mutual sources of inductive bias. It was also 
suggested that besides the relevant tasks that are used for learning, it may be 
possible to use other related tasks that we do not want to learn but that may 
help to further bias the learner (Caruana, Baluja and Mitchell, 1996; Intrator and 
Edelman, 1996) . 

In the family discovery method (Omohundro, 1996), a parameterized family of 
models is built . Several learners are trained separately on different but related 
tasks and their parameters are used to construct a manifold of parameters. When 
a new task has to be learned, the parameters are chosen so as to maximize the data 
likelihood on the one hand, and to maximize a "family prior" on the other hand 
which restricts the chosen parameters to lie on the manifold . 

In all these methods, the values of some or all the parameters are constrained. 
Such models restrict the size of the hypotheses space sufficiently to ensure good 
generalization performance from a small number of examples. 

3 Application to Stock Selection 

We apply the ideas of multi-task learning to a problem of stock selection and port­
folio management . We consider a universe of 36 assets, including 35 risky assets 
and one risk-free asset. The risky assets are 35 Canadian large-capitalization stocks 
from the Toronto Stock Exchange. The risk-free asset is represented by 90-days 
Canadian treasury bills. The data is monthly and spans 8 years, from February 
1986 to January 1994 (96 months). Each month, one can buy or sell some of these 
assets in such a way as to distribute the current worth between these assets. We do 
not allow borrowing or short selling, so the weights of the resulting portfolio are all 
non-negative (and they sum to 1). 

We have selected 5 explanatory variables, 2 of which represent macro-economic 
variables which are known to influence the business cycle, and 3 of which are micro­
economic variables representing the profitability of the company and previous price 
changes of the stock. The macro-economic variables were derived from yields of 
long-term bonds and from the Consumer Price Index. The micro-economic variables 
were derived from the series of dividend yields and from the series of ratios of stock 
price to book value of the company. Spline extrapolation (not interpolation) was 
used to obtain monthly data from the quarterly or annual company statements or 
macro-economic variables . For these variables, we used the dates at which their 
value was made public, not the dates to which they theoretically refer. 

To take into account the non-stationarity of the financial and economic time-series, 
and estimate performance over a variety of economic situations, multiple training 
experiments were performed on different training windows, each time testing on 
the following 12 months. For each architecture, 5 such trainings took place, with 
training sets of size 3, 4, 5, 6, and 7 years respectively. Furthermore, multiple such 
experiments with different initial weights were performed to verify that we did not 
obtain "lucky" results due to particular initial weights. The 5 concatenated test 
periods make an overall 5-year test period from February 1989 to January 1994. 

The training algorithm is described in (Bengio, 1996) and is based on the optimiza­
tion of the neural network parameters with respect to a financial criterion (here 
maximizing the overall profit) . The outputs of the neural network feed a trading 



Multi-Task Learning/or Stock Selection 949 

module. The trading module has as input at each time step the output of the net­
work, as well as , the weights giving the current distribution of worth between the 
assets. These weights depend on the previous portfolio weights and on the relative 
change in value of each asset (due to different price changes) . The outputs of the 
trading module are the current portfolio weights for each of the assets . Based on 
the difference between these desired weights and the current distribution of worth, 
transactions are performed. Transaction costs of 1 % (of the absolute value of each 
buy or sell transaction) are taken into account. Because of transaction costs , the ac­
tions of the trading module at time t influence the profitability of its future actions. 
The financial criterion depends in a non-additive way on the performance of the 
network over the whole sequence. To obtain gradients of this criterion with respect 
to the network output we have to backpropagate gradients backward through time, 
through the trading module, which computes a differentiable function of its inputs . 
Therefore, a gradient step is performed only after presenting the whole training 
sequence (in order , of course) . In (Bengio, 1996), we have found this procedure 
to yield significantly larger profits (around 4% better annual return), at compara­
ble risks, in comparison to training the neural network to predict expected future 
returns with the mean squared error criterion. In the experiments, the ANN was 
trained for 120 epochs. 

4 Experimental Results 

Four sets of experiments with different types of parameter sharing were performed, 
with two different architectures for the neural network: 5-3-1 (5 inputs, a hidden 
layer of 3 units, and 1 output) , 5-3-2-1 (5 inputs, 3 units in the first hidden layer, 
2 units in the second hidden layer, and 1 output) . The output represents the belief 
that the value of the stock is going to increase (or the expected future return over 
three months when training with the MSE criterion) . 

Four types of parameter sharing between the different models for each stock are 
compared in these experiments: sharing everything (the same parameters for all the 
stocks) , sharing only the parameters (weights and biases) of the first hidden layers , 
sharing only the output layer parameters, and not sharing anything (independent 
models for each stock). 

The main results for the test period, using the 5-3-1 architecture, are summarized 
in Table 1, and graphically depicted in Figure 1 with the worth curves for the four 
types of sharing. The results for the test period, using the 5-3-2-1 architecture are 
summarized in Table 2. The ANNs were compared to two benchmarks: a buy-and­
hold benchmark (with uniform initial weights over all 35 stocks), and the TSE300 
Index. Since the buy-and-hold benchmark performed better (8.3% yearly return) 
than the TSE300 Index (4.4% yearly return) during the 02/89-01/94 test period, 
Tables 1, and 2 give comparisons with the buy-and-hold benchmark. Variations 
of average yearly return on the test period due to different initial weights were 
computed by performing each of the experiments 18 times with different random 
seeds. The resulting standard deviations are less than 3.7 when no parameters or 
all the parameters are shared, less than 2.7 when the parameters of the first hidden 
layers are shared, and less than 4.2 when the output layer is shared. 

The values of beta and alpha are computed by fitting the monthly return of the 
portfolio r p to the return of the benchmark r M , both adjusted for the risk-free return 



950 J. Ghosn and Y. Bengio 

Table 1: Comparative results for the 5-3-1 architecture: four types of sharing are 
compared with the buy-and-hold benchmark (see text). 

buy & share share share no 
hold all hidden output sharing 

A verage yearly return 8.3% 13% 23.4'70 24.8% 22.8% 
Standard deviation (monthly) 3.5% 4.3% 5.3% 5.3% 5.2% 
Beta 1 1.07 1.30 1.26 1.26 
Alpha (yearly) 0 9% 20.6% 21.8% 19.9% 
t-statistic for alpha = 0 NA 11 14.9 15 14 
Reward to variability 0.9% 9.6% 22.9% 24.7% 22.3% 
Excess return above benchmark 0 4.7% 15.1% 16.4% 14.5% 
Maximum drawdown 15.7% 13.3% 13.4% 13.3% 13.3% 

Table 2: Comparative results for the 5-3-2-1 architecture: three types of sharing 
are compared with the buy-and-hold benchmark (see text). 

buy & share share first share all no 
hold all hidden hidden sharing 

Average yearly return 8.3% 12.5% 22.7% 23% 9.1% 
Standard deviation (monthly) 3.5% 4.% 5.2% 5.2% 3.1% 
Beta 1 1.02 1.25 1.28 0.87 
Alpha (yearly) 0 8.2% 19.7% 20.1% 4.% 
t-statistic for alpha = 0 NA 12.1 14.1 14.8 21.2 
Reward to variability 0.9% 9.3% 22.2% 22.5% 2.5% 
Excess return above benchmark 0 4.2% 14.4% 14.7% 0.8% 
Maximum drawdown 15.7% 13% 12.6% 13.4% 10% 

ri (interest rates), according to the linear regression E(rp -rd = alpha + beta(rM­
r i). Beta is simply the ratio of the covariance between the portfolio return and the 
market return with the variance of the market. According to the Capital Asset 
Pricing Model (Sharpe, 1964), beta gives a measure of "systematic" risk, i.e., as it 
relates to the risk of the market, whereas the variance of the return gives a measure 
of total risk. The value of alpha in the tables is annualized (as a compound return): 
it represents a measure of excess return (over the market benchmark) adjusted for 
market risk (beta). The hypothesis that alpha = 0 is clearly rejected in all cases 
(with t-statistics above 9, and corresponding p-values very close to 0). The reward 
to variability (or "Sharpe ratio") as defined in (Sharpe, 1966), is another risk-

adjusted measure of performance: h.=2:J, where O"p is the standard deviation of 
Up 

the portfolio return (monthly returns were used here). The excess return above 
benchmark is the simple difference (not risk-adjusted) between the return of the 
portfolio and that of the benchmark. The maximum drawdown is another measure 
of risk, and it can be defined in terms of the worth curve: worth[t] is the ratio 
between the value of the portfolio at time t and its value at time o. The maximum 
drawdown is then defined as max ({max.<t worth[s])-worth[t)) 

t (max.:St worth[s]) 

Three conclusions clearly come out of the tables and figure: (1) The main im­
provement is obtained by allowing some parameters to be not shared (for the 5-3-1 
a~chitecture, although the best results are obtained with a shared hidden and a free 
output layer, there are no significant differences between the different types of partial 
sharing, or no sharing at all). (2) Sharing some parameters yielded more consistent 
results (across architectures) than when not sharing at all. (3) The performance 
obtained in this way is very much better than that obtained by the benchmarks 
(buy-and-hold or TSE300), i.e., the yearly return is more than 14% above the best 
benchmark, while the risks are comparable (as measured by standard deviation of 



Multi-Task Learning/or Stock Selection 951 

Share WO No Share Share WI Share A1l MSE Buy & Hold TSE300 
3 .2 617 -

2 . 781 88 

2 .30206 

1. 82224 

1. 34242 

0 . 862602 

8902 9002 91 02 9202 9302 

Figure 1: Evolution of total worth in the 5-year test period 02/89-01/94, for the 
5-3-1 architecture, and different types of sharing. From top to bottom: sharing 
the hidden layer, no sharing across stocks, sharing the output layer , sharing every­
thing, sharing everything with MSE training, Buy and Hold benchmark, TSE300 
benchmark. 

return or by maximum drawdown). 

5 Future Work 

We will extend the results presented here in two directions. Firstly, given the 
impressive results obtained with the described approach, we would like to repeat 
the experiment on different data sets, for different markets. Secondly, we would like 
to generalize the type of multi-task learning by allowing for more freedom in the 
way the different tasks influence each other . 

Following (Omohundro, 1996) , the basic idea is to re-parameterize the parameters 
(}i E Rnl of the ith model, for all n models in the following way: (}i = 1(Pi ,W) where 
Pi E Rn2, W E Rn3 , and n x nl < n x n2 + n3 . For example, if 10 is an affine 
function, this forces the parameters of each the n different networks to lie on the 
same linear manifold. The position of a point on the manifold is given by a n 2-
dimensional vector Pi , and the manifold itself is specified by the n3 parameters of w. 
The expected advantage of this approach with respect to the one used in this paper 
is that different models (e.g., corresponding to different stocks) may "share" more 
or less depending on how far their Pi is from the Pj'S for other models. One does 
not have to specify which parameters are free and which are shared, but one has to 
specify how many are really free (n2) per model, and the shape of the manifold. 

6 Conclusion 

The results presented of this paper show an interesting application of the ideas of 
multi-task learning to stock selection. In this paper we have addressed the ques­
tion of whether ANNs trained for stock selection or portfolio management should 
be different for each stock or shared across all the stocks. We have found signifi­
cantly better results when some or (sometimes) all of the parameters of the stock 
models are free (not shared). Since a parcimonuous model is always preferable, we 
conclude that partially sharing the parameters is even preferable, since it does not 



952 J. Ghosn and Y. Bengio 

yield a deterioration in performance, and it yields more consistent results. Another 
interesting conclusion of this paper is that very large returns can be obtained at 
risks comparable to the market using a combination of partial parameter sharing 
and training with respect to a financial training criterion, with a small number 
of explanatory input features that include technical, micro-economic and macro­
economic information. 

References 

Baxter, J. (1995) . Learning internal representations. In Proceedings of the Eighth Inter­
national Conference on Computational Learning Theory, pages 311- 320, Santa Cruz, 
California. ACM Press. 

Bengio, Y. (1996). Using a financial training criterion rather than a prediction criterion. 
Technical Report #1019, Dept. Informatique et Recherche Operationnelle, Universite 
de Montreal. 

Caruana, R. (1995). Learning many related tasks at the same time with backpropaga­
tion. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances in Neural 
Information Processing Systems, volume 7, pages 657--664, Cambridge, MA. MIT 
Press. 

Caruana, R., Baluja, S., and Mitchell, T. (1996). Using the future to "sort out" the 
present: Rankprop and multitask learning for medical risk evaluation. In Advances 
in Neural Information Processing Systems, volume 8. 

Intrator, N. and Edelman, S. (1996). How to make a low-dimensional representation 
suitable for diverse tasks. Connection Science, Special issue on Transfer in Neural 
Networks. to appear. 

Moody, J. , Levin, U., and Rehfuss, S. (1993). Predicting the U.S. index of industrial 
production. Neural Network World, 3(6):791-794. 

Omohundro, S. (1996). Family discovery. In Mozer, M., Touretzky, D., and Perrone, 
M., editors, Advances in Neural Information Processing Systems 8. MIT Press, Cam­
bridge, MA. 

Pratt, L. Y. (1993) . Discriminability-based transfer between neural networks. In Giles, 
C. L., Hanson, S. J., and Cowan, J ., editors, Advances in Neural Information Pro­
cessing Systems 5, pages 204-211 , San Mateo, CA. Morgan Kaufmann. 

Refenes , A. (1994). Stock performance modeling using neural networks: a comparative 
study with regression models. Neural Networks, 7(2):375-388. 

Sharpe, W. (1964). Capital asset prices: A theory of market equilibrium under conditions 
of risk. Journal of Finance, 19:425-442. 

Sharpe, W. (1966). Mutual fund performance. Journal of Business, 39(1):119-138 . 

Silver, D. L. and Mercer, R. E. (1995). Toward a model of consolidation: The retention and 
transfer of neural net task knowledge. In Proceedings of the INNS World Congress 
on Neural Networks, volume 3, pages 164-169, Washington, DC. 


