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Abstract 

Real-valued random hidden variables can be useful for modelling 
latent structure that explains correlations among observed vari­
ables. I propose a simple unit that adds zero-mean Gaussian noise 
to its input before passing it through a sigmoidal squashing func­
tion. Such units can produce a variety of useful behaviors, ranging 
from deterministic to binary stochastic to continuous stochastic. I 
show how "slice sampling" can be used for inference and learning 
in top-down networks of these units and demonstrate learning on 
two simple problems. 

1 Introduction 

A variety of unsupervised connectionist models containing discrete-valued hidden 
units have been developed. These include Boltzmann machines (Hinton and Se­
jnowski 1986), binary sigmoidal belief networks (Neal 1992) and Helmholtz ma­
chines (Hinton et al. 1995; Dayan et al. 1995). However, some hidden variables, 
such as translation or scaling in images of shapes, are best represented using continu­
ous values. Continuous-valued Boltzmann machines have been developed (Movellan 
and McClelland 1993), but these suffer from long simulation settling times and the 
requirement of a "negative phase" during learning. Tibshirani (1992) and Bishop et 
al. (1996) consider learning mappings from a continuous latent variable space to a 
higher-dimensional input space. MacKay (1995) has developed "density networks" 
that can model both continuous and categorical latent spaces using stochasticity at 
the top-most network layer. In this paper I consider a new hierarchical top-down 
connectionist model that has stochastic hidden variables at all layers; moreover, 
these variables can adapt to be continuous or categorical. 

The proposed top-down model can be viewed as a continuous-valued belief net­
work, which can be simulated by performing a quick top-down pass (Pearl 1988). 
Work done on continuous-valued belief networks has focussed mainly on Gaussian 
random variables that are linked linearly such that the joint distribution over all 
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Figure 1: (a) shows the inner workings of the proposed unit. (b) to (e) illustrate 
four quite different modes of behavior: (b) deterministic mode; (c) stochastic linear 
mode; (d) stochastic nonlinear mode; and (e) stochastic binary mode (note the 
different horizontal scale). For the sake of graphical clarity, the density functions 
are normalized to have equal maxima and the subscripts are left off the variables. 

variables is also Gaussian (Pearl 1988; Heckerman and Geiger 1995). Lauritzen 
et al. (1990) have included discrete random variables within the linear Gaussian 
framework. These approaches infer the distribution over unobserved unit activities 
given observed ones by "probability propagation" (Pearl 1988). However, this pro­
cedure is highly suboptimal for the richly connected networks that I am interested 
in. Also, these approaches tend to assume that all the conditional Gaussian distri­
butions represented by the belief network can be easily derived using information 
elicited from experts. Hofmann and Tresp (1996) consider the case of inference 
and learning in continuous belief networks that may be richly connected. They use 
mixture models and Parzen windows to implement conditional densities. 

My main contribution is a simple, but versatile, continuous random unit that can 
operate in several different modes ranging from deterministic to binary stochastic 
to continuous stochastic. This spectrum of behaviors is controlled by only two 
parameters. Whereas the above approaches assume a particular mode for each 
unit (Gaussian or discrete), the proposed units are capable of adapting in order to 
operate in whatever mode is most appropriate. 

2 Description of the unit 
The proposed unit is shown in Figure 1a. It is similar to the deterministic sigmoidal 
unit used in multilayer perceptrons, except that Gaussian noise is added to the total 
input, I-'i, before the sigmoidal squashing function is applied.1 The probability 
density over presigmoid activity Xi for unit i is 

p(xill-'i, u;) == exp[-(xi -l-'i)2 /2u;1/ yi27rUf, (1) 

where I-'i and U[ are the mean and variance for unit i. A postsigmoid activity, Yi, is 
obtained by passing the presigmoid activity through a sigmoidal squashing function: 

Yi == cI>(Xi). (2) 

Including the transformation Jacobian, the post sigmoid distribution for unit i is 

( .1 . u~) = exp[-(cI>-1(Yi) -l-'i)2 /2ulj (3) 
P Yt 1-'" , cI>'(cI>-1(Yi))yi27ru;' 

IGeoffrey Hinton suggested this unit as a way to make factor analysis nonlinear. 
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I use the cumulative Gaussian squashing function: 

<)(x) == J~ooe-z2j2 /...tFi dz <)'(x) = </>(x) == e-z2j2 /...tFi. (4) 

Both <)0 and <)-10 are nonanalytic, so I use the C-library erfO function to imple­
ment <)0 and table lookup with quadratic interpolation to implement <)-10. 
Networks of these units can represent a broad range of structures, including deter­
ministic multilayer perceptrons, binary sigmoidal belief networks (aka. stochastic 
multilayer perceptrons), mixture models, mixture of expert models, hierarchical 
mixture of expert models, and factor analysis models. This versatility is brought 
about by a range of significantly different modes of behavior available to each unit . 
Figures 1b to Ie illustrate these modes. 

Deterministic mode: If the noise variance of a unit is very small, the postsigmoid 
activity will be a practically deterministic sigmoidal function of the mean. This 
mode is useful for representing deterministic nonlinear mappings such as those found 
in deterministic multilayer perceptrons and mixture of expert models. 

Stochastic linear mode: For a given mean, if the squashing function is approx­
imately linear over the span of the added noise, the postsigmoid distribution will 
be approximately Gaussian with the mean and standard deviation linearly trans­
formed. This mode is useful for representing Gaussian noise effects such as those 
found in mixture models, the outputs of mixture of expert models, and factor anal­
ysis models. 

Stochastic nonlinear mode: If the variance of a unit in the stochastic linear 
mode is increased so that the squashing function is used in its nonlinear region, a 
variety of distributions are producible that range from skewed Gaussian to uniform 
to bimodal. 

Stochastic binary mode: This is an extreme case of the stochastic nonlinear 
mode. If the variance of a unit is very large, then nearly all of the probability mass 
will lie near the ends of the interval (0,1) (see figure Ie). Using the cumulative 
Gaussian squashing function and a standard deviation of 150, less than 1% of the 
mass lies in (0.1,0.9). In this mode, the postsigmoid activity of unit i appears to 
be binary with probability of being "on" (ie., Yi > 0.5 or, equivalently, Xi > 0): 

(. I. 2) -100 eXP[-(X-JLi)2/2o-;]d -11'; exp[-x2/2CT;]d - ..T..(JLi) (5) 
P 't on JL~, CTi - M:::7i X - M:::7i x - 'J.' - • 

o V 27rCTi -00 V 27rCTi CTi 

This sort of stochastic activation is found in binary sigmoidal belief networks 
(Jaakkola et al. 1996) and in the decision-making components of mixture of ex­
pert models and hierarchical mixture of expert models. 

3 Continuous sigmoidal belief networks 

If the mean of each unit depends on the activities of other units and there are 
feedback connections, it is difficult to relate the density in equation 3 to a joint 
distribution over all unit activities, and simulating the model would require a great 
deal of computational effort. However, when a top-down topology is imposed on 
the network (making it a directed acyclic graph), the densities given in equations 1 
and 3 can be interpreted as conditional distributions and the joint distribution over 
all units can be expressed as 

p({Xi}) = n~lP(Xil{xjh<i) or p({Yi}) = n~lp(Yil{Yjh<i), (6) 
where N is the number of units. p(xil{xj}j<i) and p(Yil{yj}j<i) are the presigmoid 
and postsigmoid densities of unit i conditioned on the activities of units with lower 
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indices. This ordered arrangement is the foundation of belief networks (Pearl, 1988). 
I let the mean of each unit be determined by a linear combination of the postsigmoid 
activities of preceding units: 

J1.i = L,j<iWijYj, (7) 

where Yo == 1 is used to implement biases. The variance for each unit is independent 
of unit activities. A single sample from the joint distribution can be obtained by 
using the bias as the mean for unit 1, randomly picking a noise value for unit 1, 
applying the squashing function, computing the mean for unit 2, picking a noise 
value for unit 2, and so on in a simple top-down pass. 

Inference by slice sampling 

Given the activities of a set of visible (observed) units, V, inferring the distribution 
over the remaining set of hidden (unobserved) units, H, is in general a difficult task. 
The brute force procedure proceeds by obtaining the posterior density using Bayes 
theorem: 

p( {YihEHI{YihEV) = p( {Yi}iEH ,{yiliEV )/J{Yi}iEHP( {YihEH,{Yi}iEV )TIiEHdYi. (8) 

However, computing the integral in the denominator exactly is computationally 
intractable for any more than a few hidden units. The combinatorial explosion 
encountered in the corresponding sum for discrete-valued belief networks pales in 
comparison to this integral; not only is it combinatorial, but it is a continuous 
integral with a multimodal integrand whose peaks may be broad in some dimensions 
but narrow in others, depending on what modes the units are in. 

An alternative to explicit integration is to sample from the posterior distribution 
using Markov chain Monte Carlo. Given a set of observed activities, this procedure 

d { }(o) {}(l) {}(t) h· d pro uces a state sequence, Yi iEH' Yi iEH' ... , Yi iEH' ... , t at IS guarantee to 
converge to the posterior distribution. Each successive state is randomly selected 
based on knowledge of only the previous state. To simplify these random choices, 
I consider changing only one unit at a time when making a state transition. Ide­
ally, the new activity of unit i would be drawn from the conditional distribution 
p(Yil{Yj}ji=i) (Gibbs sampling). However, it is difficult to sample from this distri­
bution because it may have many peaks that range from broad to narrow. 

I use a new Markov chain Monte Carlo method called "slice sampling" (Neal 1997) 
to pick a new activity for each unit. Consider the problem of drawing a value Y from 
a univariate distribution P(y) - in this application, P(y) is the conditional distri­
bution p(Yil{yj}ji=i). Slice sampling does not directly produce values distributed 
according to P(y), but instead produces a sequence of values that is guaranteed to 
converge to P(y). At each step in the sequence, the old value Yold is used as a guide 
for where to pick the new value Ynew. 

To perform slice sampling, all that is needed is an efficient way to evaluate a function 
!(y) that is proportional to P(y) - in this application, the easily computed value 
p(Yi' {Yj}ji=i) suffices, since p(Yi' {Yj}ji=i) <X p(Yil{Yj}ji=i). Figure 2a shows an 
example of a univariate distribution, P(y). The version of slice sampling that I 
use requires that all of the density lies within a bounded intenJal as shown. To 
obtain Ynew from Yold, !(Yold) is first computed and then a uniform random value 
is drawn from [0, !(Yold)]. The distribution is then horizontally "sliced" at this 
value, as shown in figure 2a. Any Y for which !(y) is greater than this value is 
considered to be part of the slice, as indicated by the bold line segments in the 
picture shown at the top of figure 2b. Ideally, Ynew would now be drawn uniformly 
from the slice. However, determining the line segments that comprise the slice is 
not easy, for although it is easy to determine whether a particular Y is in the slice, 
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Figure 2: After obtaining a random slice from the density (a), random values are 
drawn until one is accepted. (b) and (c) show two such sequences. 

it is much more difficult to determine the line segment boundaries, especially if the 
distribution is multimodal. Instead, a uniform value is drawn from the original 
interval as shown in the second picture of figure 2b. If this value is in the slice it is 
accepted as Ynew (note that this decision requires an evaluation of fey)). Otherwise 
either the left or the right interval boundary is moved to this new value, while 
keeping Yold in the interval. This procedure is repeated until a value is accepted. 
For the sequence in figure 2b, the new value is in the same mode as the old one, 
whereas for the sequence in figure 2c, the new value is in the other mode. Once 
Ynew is obtained, it is used as Yold for the next step. 

If the top-down influence causes there to be two very narrow peaks in p(Yil{Yi}j#i) 
(corresponding to a unit in the stochastic binary mode) the slices will almost always 
consist of two very short line segments and it will be very difficult for the above 
procedure to switch from one mode to another. To fix this problem, slice sampling 
is performed in a new domain, Zi = ~ ( {Xi - J.ti} / U i). In this domain the top-down 
distribution p(zil{Yi}j<i) is uniform on (0,1), so p(zil{Yj}j#i) = p(zil{Yj}j>i) and 
I use the following function for slice sampling: 

f(zi) = exp [ - E~=i+l {Xk - J.t;i - Wki~(Ui~-l(Zi) + J.ti)} 2 /2u~], (9) 

where J.t;i = Ej<k,#i WkjYj. Since Xi, Yi and Zi are all deterministically related, 
sampling from the distribution of Zi will give appropriately distributed values for 
the other two. Many slice sampling steps could be performed to obtain a reliable 
sample from the conditional distribution for unit i, before moving on to the next 
unit. Instead, only one slice sampling step is performed for unit i before moving 
on. The latter procedure often converges to the correct distribution more quickly 
than the former. The Markov chain Monte Carlo procedure I use in the simulations 
below thus consists of sweeping a prespecified number of times through the set of 
hidden units, while updating each unit using slice sampling. 

Learning 

Given training examples indexed by T, I use on-line stochastic gradient ascent to 
perform maximum likelihood learning - ie., maximize TIT p( {xihev). This con­
sists of sweeping through the training set and for each case T following the gradient 
oflnp({xi}), while sampling hidden unit values fromp({xiheHI{xihev) using the 
sampling algorithm described above. From equations 1,6 and 7, 

flWjk == '" 8Inp({xi} )/8Wjk = ",(Xj - EI<jWjIYI)Yk/U], (10) 

fllnu] == ",81np({xi})/8Inu; = "'[(Xj - EI<jWjIYI)2 /U] -1]/2, (11) 

where", is the learning rate. 
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Figure 3: For each experiment (a) and (b), contours show the distribution of the 
2-dimensional training cases. The inferred postsigmoid activities of the two hidden 
units after learning are shown in braces for several training cases, marked by x. 

4 Experiments 
I designed two experiments meant to elicit the four modes of operation described in 
section 2. Both experiments were based on a simple network with one hidden layer 
containing two units and one visible layer containing two units. Thaining data was 
obtained by carefully selecting model parameters so as to induce various modes of 
operation and then generating 10,000 two-dimensional examples. Before training, 
the weights and biases were initialized to uniformly random values between -0.1 and 
0.1; log-variances were initialized to 10.0. Thaining consisted of 100 epochs using 
a learning rate of 0.001 and 20 sweeps of slice sampling to complete each training 
case. Each task required roughly five minutes on a 200 MHz MIPS R4400 processor. 

The distribution of the training cases in visible unit space (Yvisl - Yvis2) for the 
first experiment is shown by the contours in figure 3a. After training the network, 
I ran the inference algorithm for each of ten representative training cases. The 
postsigmoid activities of the two hidden units are shown beside the cases in figure 3a; 
clearly, the network has identified four classes that it labels (0,0) ... (1,1). Based on a 
30x30 histogram, the Kullback-Leibler divergence between the training set and data 
generated from the trained network is 0.02 bits. Figure 3b shows a similar picture 
for the second experiment, using different training data. In this case, the network 
has identified two categories that it labels using the first postsigmoid activity. The 
second postsigmoid activity indicates how far along the respective "ridge" the data 
point lies. The Kullback-Leibler divergence in this case is 0.04 bits . 

5 Discussion 
The proposed continuous-valued nonlinear random unit is meant to be a useful 
atomic element for continuous belief networks in much the same way as the sigmoidal 
deterministic unit is a useful atomic element for multi-layer perceptrons. Four 
operational modes available to each unit allows small networks of these units to 
exhibit complex stochastic behaviors. The new "slice sampling" method that I 
employ for inference and learning in these networks uses easily computed local 
information. 

The above experiments illustrate how the same network can be used to model two 
quite different types of data. In contrast, a Gaussian mixture model would require 
many more components for the second task as compared to the first. Although the 
methods due to Tibshirani and Bishop et al. would nicely model each submanifold 
in the second task, they would not properly distinguish between categories of data in 
either task. MacKay's method may be capable of extracting both the sub manifolds 
and the categories, but I am not aware of any results on such a dual problem. 
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It is not difficult to conceive of models for which naive Markov chain Monte Carlo 
procedures will become fruitlessly slow. In particular, if two units have very highly 
correlated activities, the procedure of changing one activity at a time will converge 
extremely slowly. Also, the Markov chain method may be prohibitive for larger 
networks. One approach to avoiding these problems is to use the Helmholtz machine 
(Hinton et al. 1995) or mean field methods (Jaakkola et al. 1996). 

Other variations on the theme presented in this paper include the use of other types 
of distributions for the hidden units (e.g., Poisson variables may be more biologically 
plausible) and different ways of parameterizing the modes of behavior. 
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