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We couple the tasks of source separation and density estimation 
by extracting the local geometrical structure of distributions ob­
tained from mixtures of statistically independent sources. Our 
modifications of the self-organizing map (SOM) algorithm results 
in purely digital learning rules which perform non-parametric his­
togram density estimation. The non-parametric nature of the sep­
aration allows for source separation of non-linear mixtures. An 
anisotropic coupling is introduced into our SOM with the role of 
aligning the network locally with the independent component con­
tours. This approach provides an exact verification condition for 
source separation with no prior on the source distributions. 

1 INTRODUCTION 

Much of the current work on visual cortex modeling has focused on the generation of 
coding which captures statistical independence and sparseness (Bell and Sejnowski 
1996, Olshausen and Field 1996). The Bell and Sejnowski model suffers from the 
parametric and intrinsically non-local nature of their source separation algorithm, 
while the Olshausen and Field model does not achieve true sparse-distributed cod­
ing where each cell has the same response probability (Field 1994). In this paper, we 
construct an extensively modified SOM with equipartition of activity as a steady­
state for the task of local statistical independence processing and sparse-distributed 
coding. 
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Ritter and Schulten (1986) demonstrated that the density of the Kohonen SOM 
units is not proportional to the input density in the steady-state. In one dimen­
sion the Kohonen net under-represents high density and over-represents low den­
sity regions. Thus SOM's are generally not used for density estimation. Several 
modifications for controlling the magnification of the representation have appeared. 
Recently, Bauer et . al. (1996) used an "adaptive step size" , and Lin and Cowan 
(1996) used an Lp-norm weighting to control the magnification. Here we concen­
trate on the later's "faithful representation" algorithms for source separation and 
density estimation. 

2 SHARPLY PEAKED DISTRIBUTIONS 

Mixtures of sharply peaked source distributions will contain high density contours 
which correspond to the independent component contours. Blind separation can be 
performed rapidly for this case in a net with one dimensional branched topology. A 
digital learning rule where the updates only take on discrete values was used: 1 

(1) 

where K is the learning rate, A(€) the neighborhood function, {w} the SOM unit 
positions, and ( the input. 
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Figure 1: Left: linear source separation by branched net. Dashed lines correspond 
to the independent component axes. Net configuration is shown every 200 points. 
Dots denote the unit positions after 4000 points. Right: Voronoi partition of the 
vector space by the SOM units. 

We performed source separation and coding of two mixed signals in a net with the 
topology of two cross-linked branches (see Fig. (1)). The neighborhood function 

IThe sign function sgn(i) takes on a value of 1 for i > 0, 0 for i = 0 and -1 for i < O. 
Here the sign function acts component-wise on the vector. 
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A(€) is taken to be Gaussian where € is the distance to the winning unit along the 
branch structure. Two speech audio files were randomly mixed and pre-whitened 
first to decorrelate the two mixtures. Since pre-whitening tends to orthogonalize 
the independent component axes, much of the processing that remains is rotation 
to find the independent component coordinate system. A typical simulation is 
shown in Fig. (1). The branches of the net quickly zero in on the high density 
directions. As seen from the nearest-neighbor Voronoi partition of the distribution 
(Fig. 1 b), the branched SOM essentially performs a one dimensional equipartition of 
the mixture. The learning rule Eqn. 1 attempts to place each unit at the component­
wise median of the distribution encompassed by its Voronoi partition. For sharply 
peaked sources, the algorithm will place the units directly on top of the high density 
ridges. 

To demonstrate the generality of our non-parametric approach, we perform source 
separation and density coding of a non-linear mixture. Because our network has 
local dynamics, with enough units, the network can follow the curved "independent 
component contours" of the input distribution. The result is shown in Fig. (2). 

Figure 2: Source separation of non-linear mixture. The mixture is given by ~1 = 
-2sgn(st} . s~ + 1.1s1 - S2, ~2 = -2sgn(s2) . s~ + SI + 1.1s2. Left: the SOM 
configuration is shown periodically in the figure, with the configuration after 12000 
points indicated by the dots. Dashed lines denote two independent component 
contours. Right: the sources (SI' S2), mixtures (6, 6) and pseudo-histogram­
equalized representations (01, 02) . 

To unmix the input, a parametric separation approach can be taken where least 
squares fit to the branch contours is used. For the source separation in Fig. CIa), 
assuming linear mixing and inserting the branch coordinate system into an unmix­
ing matrix, we find a reduction of the amplitudes of the mixtures to less than one 
percent of the signal. This is typical of the quality of separation obtained in our 
simulations. For the non-linear source separation in Fig. (2), parametric unmix­
ing can similarly be accomplished by least squares fit to polynomial contours with 
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quadratic terms. Alternatively, taking full advantage of the non-parametric nature 
of the SOM approach, an approximation of the independent sources can be con­
structed from the positions Wi. of the winning unit. Or as we show in Fig. (2b), the 
cell labels i* can be used to give a pseudo-histogram-equalized source representa­
tion. This non-parametric approach is thus much more general in the sense that no 
model is needed of the mixing transformation. Since there is only one winning unit 
along one branch, only one output channel is active at any given time. For sharply 
peaked source distributions such as speech, this does not significantly hinder the 
fidelity of the source representation since the input sources hover around zero most 
of the time. This property also has the potential for utilization in compression. 
However, for a full rigorous histogram-equalized source representation, we must 
turn to a network with a topology that matches the dimensionality of the input. 

3 ARBITRARY DISTRIBUTIONS 

For mixtures of sources with arbitrary distributions, we seek a full N dimensional 
equipartition. We define an (M, N) partition of !RN to be a partition of !RN into 
(M + 1)N regions by M parallel cuts normal to each of N distinct directions. The 
simplest equipartition of a source mixtures is the trivial equipartition along the 
independent component axes (ICA). Our goal is to achieve this trivial ICA aligned 
equipartition using a hypercube architecture SOM with M + 1 units per dimension. 
For an (M, N) equipartition, since the number of degrees of freedom to define the 
M N hyperplanes grows quadratically in N, while the number of constraints grows 
exponentially in N, for large enough M the desired trivial equipartition will the 
unique (M, N) equipartition. We postulate that M = 2 suffices for uniqueness. 
Complementary to this claim, it is known that a (1, N) equipartition does not exist 
for arbitrary distributions for N ~ 5 (Ramos 1996). The uniqueness of the (M, N) 
equipartition of source mixtures thus provides an exact verification condition for 
noiseless source separation. 

With? = i-: - i, the digital equipartition learning rule is given by: 

~wi - ~A(?)· sgn(?) (2) 

~Wi· - L~Wi' (3) 
i 

where 
A(?) = A( -?). (4) 

Equipartion of the input distribution can easily be shown to be a steady-state of 
the dynamics. Let qk be the probability measure of unit k. For the steady-state: 

< ~wk > = 0 

L q; . A({ - k) . sgn(i - k) + qk L A( k - i) . sgn( k - i) 

L(q; - qk) . A(i - k) . sgn(i - k), 
i 

for all units k. By inspection, equipartition, where q; = qk~ for all units i is a 
solution to the equation above. It has been shown that equipartition is the only 
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steady-state of the learning rule in two dimensional rectangular SOM's (Lin and 
Cowan 1996), though with the highly overconstrained steady-state equations, the 
result should be much more general. 

One further modification of the SOM is required. The desired trivial ICA equipar­
tition is not a proper Voronoi partition except when the independent component 
axes are orthogonal. To obtain the desired equipartition, it is necessary to change 
the definition of the winning unit i-. Let 

(5) 

be the winning region of the unit at wi' Since a histogram-equalized representation 
independent of the mixing transformation A is desired, we require that 

{An(w)} = {n(Aw)} , 

i.e., n is equivariant under the action of A (see e.g. Golubitsky 1988). 
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Figure 3: Left: Voronoi and equivariant partitions of the a primitive cell. Right: 
configuration of the SOM after 4000 points. Initially the units of the SOM were 
equally spaced and aligned along the two mixture coordinate directions. 

In two dimensions, we modify the tessellation by dividing up a primitive cell amongst 
its constituent units along lines joining the midpoints of the sides. For a primitive 
cell composed of units at ii, b, c and J, the region of the primitive cell represented 
by ii is the simply connected polygon defined by vertices at ii, (it + b)/2, (it + d)/2 
and (it+b+c+d)/4. The two partitions are contrasted in Fig. (3a). Our modified 
equivariant partition satisfies Eqn. (6) for all non-singular linear transformations. 

The learning rule given above was shown to have an equipartition steady state. It 
remains, however, to align the partitions so that it becomes a valid (M, N) partition. 
The addition of a local anisotropic coupling which physically, in analogy to elastic 
nets, might correspond to a bending modulus along the network's axes, will tend 
to align the partitions and enhance convergence to the desired steady state. We 
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supplemented the digital learning rule (Eqs. (2)-(3)) with a movement of the units 
towards the intersections of least squares line fits to the SOM grid. 

Numerics are shown in Fig. 3b, where alignment with the independent component 
coordinate system and density estimation in the form of equipartition can be seen . 
The aligned equipartition representation formed by the network gives histogram­
equalized representations of the independent sources, which , because of the equiv­
ariant nature of the SOM, will be independent of the mixing matrix. 

4 DISCUSSION 

Most source separation algorithms are parametric density estimation approaches 
(e.g. Bell and Sejnowski 1995, Pearlmutter and Parra 1996). Alternatively in 
parallel with this work, the standard SOM was used for the separation of both 
discrete and uniform sources (Herrmann and Yang 1996, Pajunen et. al. 1996). The 
source separation approach taken here is very general in the sense that no a priori 
assumptions about the individual source distributions and mixing transformation 
are made. Our approach's local non-parametric nature allows for source separation 
of non-linear mixtures and also possibly the separation of more sharply peaked 
sources from fewer mixtures. The low to high dimensional map required for the 
later task will be prohibitively difficult for parametric unmixing approaches. 

For density estimation in the form of equipartition, we point out the importance 
of a digital scale-invariant algorithm. Direct dependence on ( and Wi has been 
extracted out of the learning rule. Because the update depends only upon the 
partition, the network learns from its own coarse response to stimuli. This along 
with the equivariant partition modification underscore the dynamic partition nature 
of the our algorithm. More direct computational geometry partitioning algorithms 
are currently being pursued. It is also clear that a hybrid local parametric density 
estimation approach will work for the separation of sharply peaked sources (Bishop 
et. al. 1996, Utsugi 1996). 

5 CONCLUSIONS 

We have extracted the local geometrical structure of transformations of product dis­
tributions. By modifying the SOM algorithm we developed a network with the ca­
pability of non-parametrically separating out non-linear source mixtures. Sharply 
peaked sources allow for quick separation via a branched SOM network. For arbi­
trary source distributions, we introduce the (M,N) equipartition, the uniqueness of 
which provides an exact verification condition for source separation. 

Fundamentally, equipartition of activity is a very sensible resource allocation prin­
ciple. In this work, the local equipartition coding and source separation processing 
proceed in tandem, resulting in optimal coding and processing of source mixtures. 
We believe the digital "counting" aspect of the learning rule, the learning based on 
the network's own coarse response to stimuli, the local nature of the dynamics, and 
the coupling of coding and processing make this an attractive approach from both 
computational and neural modeling perspectives. 
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