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Abstract

Detection of the periodicity of amplitude modulation is a major step in
the determination of the pitch of a sound. In this article we will
present a silicon model that uses synchronicity of spiking neurons to
extract the fundamental frequency of a sound. It is based on the
observation that the so called ‘Choppers’ in the mammalian Cochlear
Nucleus synchronize well for certain rates of amplitude modulation,
depending on the cell’s intrinsic chopping frequency. Our silicon
model uses three different circuits, i.e., an artificial cochlea, an Inner
Hair Cell circuit, and a spiking neuron circuit.

1. INTRODUCTION

Over the last few years, we have developed and implemented several analog VLSI
building blocks that allow us to model parts of the auditory pathway [1], [2], [3]. This
paper presents one experiment using these building blocks to create a model for the
detection of the fundamental frequency of a harmonic complex. The estimation of this
fundamental frequency by the model shows some important similarities with psycho-
acoustic experiments in pitch estimation in humans [4]. A good model of pitch
estimation will give us valuable insights in the way the brain processes sounds.
Furthermore, a practical application to speech recognition can be expected, either by
using the pitch estimate as an element in the acoustic vector fed to the recognizer, or by
normalizing the acoustic vector to the pitch.
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Although the model doesn’t yield a complete model of pitch estimation, and explains
probably only one of a few different mechanisms the brain uses for pitch estimation, it
can give us a better understanding of the physiological background of psycho-acoustic
results. An electronic model can be especially helpful, when the parameters of the model
can be easily controlled, and when the model will operate in real time.

2. THE MODEL

The model was originally developed by Hewitt and Meddis [4], and was based on the
observation that Chopper cells in the Cochlear Nucleus synchronize when the stimulus
is modulated in amplitude within a particular modulation frequency range [5].
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Fig. 1. Diagram of the AM detection model. BMF=Best Modulation Frequency.

The diagram shown in figure 1 shows the elements of the model. The cochlea filters the
incoming sound signal. Since the width of the pass-band of a cochlear band-pass filter is
proportional to its cut-off frequency, the filters will not be able to resolve the individual
harmonics of a high frequency carrier (>3kHz) amplitude modulated at a low rate
(<500Hz). The outputs of the cochlear filters that have their cut-off frequency slightly
above the carrier frequency of the signal will therefore still be modulated in amplitude at
the original modulation frequency. This modulation component will therefore
synchronize a certain group of Chopper cells. The synchronization of this group of
Chopper cells can be detected using a coincidence detecting neuron, and signals the
presence of a particular amplitude modulation frequency. This model is biologically
plausible, because it is known that the choppers synchronize to a particular amplitude
modulation frequency and that they project their output towards the Inferior Colliculus
(amongst others). Furthermore, neurons that can function as coincidence detectors are
shown to be present in the Inferior Colliculus and the rate of firing of these neurons is a
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band-pass function of the amplitude modulation rate. It is not known to date however if
the choppers actually project to these coincidence detector neurons.

The actual mechanism that synchronizes the chopper cells will be discussed with the
measurements in section 4. In the next section, we will first present the circuits that
allowed us to build the VLSI implementation of this model.

3. THE CIRCUITS

All of the circuits used in our model have already been presented in more detail
elsewhere, but we will present them briefly for completeness. Our silicon cochlea has
been presented in detail at NIPS’95 [1], and more details about the Inner Hair Cell
circuit and the spiking neuron circuit can be found in [2].

3.1 THE SILICON COCHLEA

The silicon cochlea consists of a cascade of second order low-pass filters. Each filter
section is biased using Compatible Lateral Bipolar Transistors (CLBTs) which control
the cut-off frequency and the quality factor of each section. A single resistive line is
used to bias all CLBTSs. Because of the exponential relation between the Base-Emitter
Voltage and the Collector current of the CLBTS, the linear voltage gradient introduced
by the resistive line will yield a filter cascade with an exponentially decreasing cut-off
frequency of the filters. The output voltage of each filter V,, then represents the
displacement of a basilar membrane section. In order to obtain a representation of the
basilar membrane velocity, we take the difference between V,, and the voltage on the
internal node of the second order filter.

We have integrated this silicon cochlea using 104 filter stages, and the output of every
second stage is connected to an output pin.

3.2 THE INNER HAIR CELL MODEL

The inner hair cell circuit is used to half-wave rectify the basilar membrane velocity
signal and to perform some form of temporal adaptation, as can be seen in figure 2b.
The differential pair at the input is used to convert the input voltage into a current with
a compressive relation between input amplitude and the actual amplitude of the current.
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Fig. 2. a) The Inner Hair Cell circuit, b) measured output current.
We have integrated a small chip containing 4 independent inner hair cells.
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3.3 THE SPIKING NEURON MODEL

The spiking neuron circuit is given in figure 3. The membrane of a biological neuron is
modeled by a capacitance, Cp., and the membrane leakage current is controlled by the
gate voltage, Vi, of an NMOS transistor. In the absence of any input (I.,=0), the
membrane voltage will be drawn to its resting potential (controlled by Vi), by this
leakage current. Excitatory inputs simply add charge to the membrane capacitance,
whereas inhibitory inputs are simply modeled by a negative L,. If an excitatory current
larger than the leakage current of the membrane is injected, the membrane potential will
increase from its resting potential. This membrane potential, V..., is compared with a
controllable threshold voltage Vine,, using a basic transconductance amplifier driving a
high impedance load. If Ve, exceeds Vi, an action potential will be generated.
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Fig. 3. The Spiking Neuron circuit

The generation of the action potential happens in a similar way as in the biological
neuron, where an increased sodium conductance creates the upswing of the spike, and a
delayed increase of the potassium conductance creates the downswing. In the circuit this
is modeled as follows. If Vpem rises above Vi, the output voltage of the comparator
will rise to the positive power supply. The output of the following inverter will thus go
low, thereby allowing the "sodium current” Iy, to pull up the membrane potential. At the
same time however, a second inverter will allow the capacitance Cx to be charged at a
speed which can be controlled by the current Ix.,. As soon as the voltage on Cx is high
enough to allow conduction of the NMOS to which it is connected, the "potassium
current” Ix will be able to discharge the membrane capacitance.

K Vinem Dow drops below Viues, the output of the first inverter will become high, cutting
off the current Iy,. Furthermore, the second inverter will then allow Cx to be discharged
by the current Ixioun. If Iksown is Small, the voltage on Cx will decrease only slowly, and,
as long as this voltage stays high enough to allow Ik to discharge the membrane, it will
be impossible to stimulate the neuron if L, is smaller than Ix. Therefore Ixsu, can be
said to control the ‘refractory period’ of the neuron.

We have integrated a chip, containing a group of 32 neurons, each having the same bias
voltages and currents. The component mismatch and the noise ensure that we actually
have 32 similar, but not completely equal neurons.

4. TEST RESULTS

Most neuro-physiological data concerning low frequency amplitude modulation of high
frequency carriers exists for carriers at about SkHz and a modulation depth of about
50%. We therefore used a 5 kHz sinusoid in our tests and a 50% modulation depth at
frequencies below 550Hz.
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Fig. 4. PSTH of the chopper chip for 2 different sound intensities

First step in the elaboration of the model is to test if the group of spiking neurons on a
single chip is capable of performing like a group of similar Choppers. Neurons in the
auditory brainstem are often characterized with a Post Stimulus Time Histogram
(PSTH), which is a histogram of spikes in response to repeated stimulation with a pure
tone of short duration. If the choppers on the chip are really similar, the PSTH of this
group of choppers will be very similar to the PSTH of a single chopper. In figure 4 the
PSTH of the circuit is shown. It is the result of the summed response of the 32 neurons
on chip to 20 repeated stimulations with a 5kHz tone burst. This figure shows that the
response of the Choppers yields a PSTH typical of chopping neurons, and that the
chopping frequency, keeping all other parameters constant, increases with increasing
sound intensity. The chopping rate for an input signal of given intensity can be
controlled by setting the refractory period of the spiking neurons, and can thus be used
to create the different groups of choppers shown in figure 1. The chopping rate of the
choppers in figure 4 is about 300Hz for a 29dB input signal.
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Fig. 5. Spike generation for a Chopper cell.

To understand why the Choppers will synchronize for a certain amplitude modulation
frequency, one has to look at the signal envelope, which contains temporal information
on a time scale that can influence the spiking neurons. The 5kHz carrier itself will not
contain any temporal information that influences the spiking neuron in an important
way. Consider the case when the modulation frequency is similar to the chopping
frequency (figure 5). If a Chopper then spikes during the rising flank of the envelope, it
will come out of its refractory period just before the next rising flank of the envelope. If
the driven chopping frequency is a bit too low, the Chopper will come out of its
refractory period a bit later, therefore it receives a higher average stimulation and it
spikes a little higher on the rising flank of the envelope. This in turn increases the
chopping frequency and thus provides a form of negative feedback on the chopping
frequency. This therefore makes spiking on a certain point on the rising flank of the
envelope a stable situation. With the same reasoning one can show that spiking on the
falling flank is therefore an unstable situation. Furthermore, it is not possible to stabilize
a cell driven above its maximum chopping rate, nor is it possible to stabilize a cell that
fires more than once per modulation period. Since a group of similar choppers will
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stabilize at about the same point on the rising flank, their spikes will thus coincide when
the modulation frequency allows them to.

—a— 30dB

9 10 200 300 40 S0 60 o 10 a0 M 40 50 60
modulation rale (He) modulation rale (Hr)

Fig. 6. AM sensitivity of the coincidence detecting neuron.

Another free parameter of the model is the threshold of the coincidence detecting
neuron. If this parameter is set so that at least 60% of the choppers must spike within
Ims to be considered a coincidence, we obtain the output of figure 6. We can see that
this yields the expected band-pass Modulation Transfer Function (MTF), and that the
best modulation frequency for the 29dB input signal corresponds to the intrinsic
chopping rate of the group of neurons. Figure 6 also shows that the best modulation
frequency (BMF), just as the chopping rate, increases with increasing sound intensity,
but that the maximum number of spikes per second actually decreases. This second
effect is caused by the fact that the stabilizing effect of the positive flank of the signal
envelope only influences the time during which the neuron is being charged, which
becomes a smaller part of the total spiking period at higher intensities. The negative
feedback thus has less influence on the total chopping period and therefore synchronizes
the choppers less.
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Fig. 7. AM sensitivity of the coincidence detecting neuron.

When the coincidence threshold is lowered to 50%, we can see in figure 7a that the
maximum number of spikes goes up, because this threshold is more easily reached.
Furthermore, a second pass-band shows up at double the BMF. This is because the
choppers fire only every second amplitude modulation period, and part of the group of
choppers will synchronize during the odd periods, whereas others during the even
periods. The division of the group of choppers will typically be close to, but hardly ever
exactly 50-50, so that either during the odd or during the even modulation period the
50% coincidence threshold is exceeded. The 60% threshold of figure 6 will only rarely
be exceeded, explaining the weak second peak seen around 500Hz in this figure.
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Figure 7b. shows the MTF for low intensity signals with a 50% coincidence threshold.
At low intensities the effect of an additional non-linearity, the stimulation threshold,
shows up. Whenever the instantaneous value of the envelope is lower than the
stimulation threshold, the spiking neuron will not be stimulated because its input current
will be lower than the cell’s leakage current. At these low intensities the activity during
the valleys of the modulation envelope will thus not be enough to stimulate the Choppers
(see figure 5). For stimuli with a lower modulation frequency than the group’s chopping
frequency, the Choppers will come out of their refractory period in such a valley. These
choppers therefore will have to wait for the envelope amplitude to increase above a
certain value, before they receive anew a stimulation. This waiting period nullifies the
effect of the variation of the refractory period of the Choppers, and thus synchronizes the
Choppers for low modulation frequencies. A second effect of this waiting period is that
in this case the firing rate of the Choppers matches the modulation frequency. When the
modulation frequency becomes higher than the maximum chopping frequency, the
Choppers will fire only every second period, but will still be synchronized, as can be
seen between 300Hz and 500Hz in figure 7b.

5. CONCLUSIONS

In this article we have shown that it is possible to use our building blocks to build a
multi-chip system that models part of the auditory pathway. Furthermore, the fact that
the spiking neuron chip can be easily biased to function as a group of similar Choppers,
combined with the relative simplicity of the spike generation mechanism of a single
neuron on chip, allowed us to gain insight in the process by which chopping neurons in
the mammalian Cochlear Nucleus synchronize to a particular range of amplitude
modulation frequencies.
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PART VI
SPEECH, HANDWRITING AND SIGNAL
PROCESSING






