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Abstract 

Detectim of the periodicity of amplitude modulatim is a major step in 
the determinatim of the pitch of a SOODd. In this article we will 
present a silicm model that uses synchrroicity of spiking neurms to 
extract the fundamental frequency of a SOODd. It is based m the 
observatim that the so called 'Choppers' in the mammalian Cochlear 
Nucleus synchrmize well for certain rates of amplitude modulatim, 
depending m the cell's intrinsic chopping frequency. Our silicm 
model uses three different circuits, i.e., an artificial cochlea, an Inner 
Hair Cell circuit, and a spiking neuron circuit 

1. INTRODUCTION 

Over the last few years, we have developed and implemented several analog VLSI 
building blocks that allow us to model parts of the auditory pathway [1], [2], [3]. This 
paper presents me experiment using these building blocks to create a model for the 
detection of the fundamental frequency of a harmroic complex. The estimatim of this 
fundamental frequency by the model shows some important similarities with psycho­
acoustic experiments in pitch estimation in humans [4]. A good model of pitch 
estimation will give us valuable insights in the way the brain processes sounds. 
Furthermore, a practical application to speech recognition can be expected, either by 
using the pitch estimate as an element in the acoustic vector fed to the recognizer, or by 
normalizing the acoustic vector to the pitch. 
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Although the model doesn't yield a complete model of pitch estimatim, and explains 
probably mly one of a few different mechanisms the brain uses for pitch estimatim, it 
can give us a better understanding of the physiological background of psycho-acoustic 
results. An electrmic model can be especially helpful, when the parameters of the model 
can be easily controlled, and when the model will operate in real time. 

2. THE MODEL 

The model was originally developed by Hewitt and Meddis [4], and was based m the 
observatim that Chopper cells in the Cochlear Nucleus synchronize when the stimulus 
is modulated in amplitude within a particular modulation frequency range [5]. 
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Fig. 1. Diagram of the AM detection model. BMF=Best Modulation Frequency. 

The diagram shown in figure 1 shows the elements of the model. The cochlea filters the 
incoming sound signal. Since the width of the pass-band of a cochlear band-pass filter is 
proportimal to its cut-off frequency, the filters will not be able to resolve the individual 
harmooics of a high frequency carrier (>3kHz) amplitude modulated at a low rate 
«500Hz). The outputs of the cochlear filters that have their cut-off frequency slightly 
above the carrier frequency of the signal will therefm-e still be modulated in amplitude at 
the mginal modulatim frequency. This modulatim compment will therefm-e 
synchronize a certain group of Chopper cells. The synchronizatim of this group of 
Chopper cells can be detected using a coincidence detecting neurm, and signals the 
presence of a particular amplitude modulation frequency. This model is biologically 
plausible, because it is known that the choppers synchronize to a particular amplitude 
modulatim frequency and that they project their output towards the Inferim- Colliculus 
(ammgst others). Furthermm-e, neurms that can functim as coincidence detectm-s are 
shown to be present in the Inferim- Colliculus and the rate of firing of these neurms is a 
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band-pass functiro of the amplitude modulatiro rate. It is not known to date however if 
the choppers actually project to these coincidence detectoc neurons. 

The actual mechanism that synchrooizes the chopper cells will be discussed with the 
measurements in sectim 4. In the next sectim. we will first present the circuits that 
allowed us to build the VLSI implementation of this model. 

3. THE CIRCUITS 

All of the circuits used in our model have already been presented in m(X'e detail 
elsewhere. but we will present them briefly f(X' completeness. Our silicro cochlea has 
been presented in detail at NlPS'95 [1]. and m(X'e details about the Inner Hair Cell 
circuit and the spiking neuron circuit can be found in [2]. 

3.1 THE SILICON COCHLEA 

The silicro cochlea crosists of a cascade of secmd (X'der low-pass filters. Each filter 
sectiro is biased using Compatible Lateral Bipolar Transist(X's (Q.BTs) which crotrol 
the cut-off frequency and the quality fact(X' of each sectiro. A single resistive line is 
used to bias all Q.BTs. Because of the exponential relatiro between the Base-Emitter 
Voltage and the Collectoc current of the Q.BTs. the linear voltage gradient introduced 
by the resistive line will yield a filter cascade with an exponentially decreasing cut-off 
frequency of the filters. The output voltage of each filter Vout then represents the 
displacement of a basilar membrane sectiro. In (X'der to obtain a representatim of the 
basilar membrane velocity. we take the difference between Vout and the voltage m the 
internal node of the second order filter. 

We have integrated this silicro cochlea using 104 filter stages. and the output of every 
second stage is connected to an output pin. 

3.2 THE INNER HAIR CELL MODEL 

The inner hair cell circuit is used to half-wave rectify the basilar membrane velocity 
signal and to perf(I'm some f(I'm of temp<X'al adaptatiro. as can be seen in figure 2b. 
The differential pair at the input is used to crovert the input voltage into a current with 
a compressive relatim between input amplitude and the actual amplitude of the current. 
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Fig. 2. a) The Inner Hair Cell circuit. b) measured output current 

We have integrated a small chip containing 4 independent inner hair cells. 
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3.3 THE SPIKING NEURON MODEL 

The spiking neuron circuit is given in figure 3. The membrane of a biological neuron is 
modeled by a capacitance. Cmem. and the membrane leakage current is coo.trolled by the 
gate voltage. VIeako of an NMOS transiskX'. In the absence of any input O"ex=O). the 
membrane voltage will be drawn to its resting potential (coo.trolled by V rest). by this 
leakage current. Excitatory inputs simply add charge to the membrane capacitance. 
whereas inhibitory inputs are simply modeled by a negative lex. If an excitatory current 
larger than the leakage current of the membrane is injected. the membrane potential will 
increase from its resting potential. This membrane potential. Vroom, is COOlpared with a 
coo.trollable threshold voltage V three. using a basic transconductance amplifier driving a 
high impedance load. If V mem exceeds V threa. an action potential will be generated. 

Fig. 3. The Spiking Neuron circuit 

The generation of the actioo potential happens in a similar way as in the biological 
neuron. where an increased sodium coo.ductance creates the upswing of the spike. and a 
delayed increase of the potassium coo.ductance creates the downswing. In the circuit this 
is modeled as follows. H V mam rises above Vthrea• the output voltage of the COOlparat<X" 
will rise to the positive power supply. The output of the following inverter will thus go 
low. thereby allowing the "sodium current" INa to pull Up the membrane potential. At the 
same time however. a second inverter will allow the capacitance CK to be charged at a 
speed which can be coo.trolled by the current ~p. As soon as the voltage on CK is high 
enough to allow coo.ductioo of the NMOS to which it is connected. the "potassium 
current" IK will be able to discharge the membrane capacitance. 

H V mam now drops below V threat the output of the first inverter will become high. cutting 
off the current INa. Furtherm<X"e. the second inverter will then allow CK to be discharged 
by the current IKdown. If IKdown is small, the voltage on CK will decrease only slowly. and. 
as loog as this voltage stays high enough to allow IK to discharge the membrane. it will 
be impossible to stimulate the neuron if lex is smaller than IK • Theref<X"e ~own can be 
said to control the 'refractory period' of the neuron. 

We have integrated a chip. coo.taining a group of 32 neurons. each having the same bias 
voltages and currents. The COOlponent mismatch and the noise ensure that we actually 
have 32 similar. but not completely equal neurons. 

4. TEST RESULTS 

Most neuro-physiological data coo.cerning low frequency amplitude modulation of high 
frequency carriers exists f<X" carriers at about 5kHz and a modulation depth of about 
50%. We theref<X"e used a 5 kHz sinusoid in our tests and a 50% modulatioo depth at 
frequencies below 550Hz. 
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Fig. 4. PSTH of the chopper chip for 2 different sound intensities 

First step in the elaboration of the model is to test if the group of spiking neurons on a 
single chip is capable of performing like a group of similar Choppers. Neurons in the 
auditory brainstem are often characterized with a Post Stimulus Time Histogram 
(pSTH), which is a histogram of spikes in response to repeated stimulatien with a pure 
tone of short duratien. If the choppers en the chip are really similar, the PSTH of this 
group of choppers will be very similar to the PSTH of a single chopper. In figure 4 the 
PSTH of the circuit is shown. It is the result of the summed response of the 32 neurens 
en chip to 20 repeated stimulatiens with a 5kHz tene burst. This figure shows that the 
response of the Choppers yields a PSTH typical of chopping neurens, and that the 
chopping frequency, keeping all other parameters constant, increases with increasing 
sound intensity. The chopping rate for an input signal of given intensity can be 
controlled by setting the refractory period of the spiking neurons, and can thus be used 
to create the different groups of choppers shown in figure 1. The chopping rate of the 
choppers in figure 4 is about 300Hz for a 29dB input signal. 
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Fig. 5. Spike generation for a Chopper cell. 

To understand why the Choppers will synchronize fix' a certain amplitude modulatien 
frequency, one has to look at the signal envelope, which CCIltains tempocal information 
en a time scale that can influence the spiking neurens. The 5kHz carrier itself will not 
contain any tempocal informatien that influences the spiking neuren in an impoctant 
way. Consider the case when the modulation frequency is similar to the chopping 
frequency (figure 5). If a Chopper then spikes during the rising flank of the envelope, it 
will come out of its refractory period just before the next rising flank of the envelope. If 
the driven chopping frequency is a bit too low, the Chopper will come out of its 
refractory period a bit later, therefix'e it receives a higher average stimulation and it 
spikes a little higher en the rising flank of the envelope. This in turn increases the 
chopping frequency and thus provides a form of negative feedback on the chopping 
frequency. This theref(X'e makes spiking en a certain point en the rising flank of the 
envelope a stable situatien. With the same reasening one can show that spiking en the 
falling flank is theref(X'e an unstable situatien. Furthermore, it is not possible to stabilize 
a cell driven above its maximum chopping rate, n(X' is it possible to stabilize a cell that 
fires m(X'e than ence per modulatien period. Since a group of similar choppers will 
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stabilize at about the same point on the rising flank. their spikes will thus coincide when 
the modulation frequency allows them to. 
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Fig. 6. AM sensitivity of the coincidence detecting neuron. 

Another free parameter of the model is the threshold of the coincidence detecting 
neuron. If this parameter is set so that at least 60% of the choppers must spike within 
Ims to be considered a coincidence. we obtain the output of figure 6. We can see that 
this yields the expected band-pass Modulation Transfer Function (MTF). and that the 
best modulation frequency f(X' the 29dB input signal caTesponds to the intrinsic 
chopping rate of the group of neuroo.s. Figure 6 also shows that the best modulatioo. 
frequency (BMF). just as the chopping rate. increases with increasing sound intensity. 
but that the maximum number of spikes per second actually decreases. This second 
effect is caused by the fact that the stabilizing effect of the positive flank of the signal 
envelope only influences the time during which the neuron is being charged. which 
becomes a smaller part of the total spiking period at higher intensities. The negative 
feedback thus has less influence on the total chopping period and therefore synchronizes 
the choppers less. 
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Fig. 7. AM sensitivity of the coincidence detecting neuron. 

When the coincidence threshold is lowered to 50%. we can see in figure 7a that the 
maximum number of spikes goes up. because this threshold is m(X'e easily reached. 
Furthermore. a second pass-band shows up at double the BMF. This is because the 
choppers fire only every second amplitude modulation period. and part of the group of 
choppers will synchronize during the odd periods. whereas others during the even 
periods. The division of the group of choppers will typically be close to. but hardly ever 
exactly 50-50. so that either during the odd or during the even modulation period the 
50% coincidence threshold is exceeded. The 60% threshold of figure 6 will only rarely 
be exceeded. explaining the weak second peak seen around 500Hz in this figure. 
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Figure 7b. shows the MIF f<X" low intensity signals with a SO% coincidence threshold. 
At low intensities the effect of an additional non-linearity, the stimulation threshold, 
shows up. Whenever the instantaneous value of the envelope is lower than the 
stimulatioo threshold, the spiking neuroo will not be stimulated because its input current 
will be lower than the cell's leakage current. At these low intensities the activity during 
the valleys of the modulatioo envelope will thus not be enough to stimulate the Choppers 
(see figure 5). F<X" stimuli with a lower modulatioo frequency than the group's chopping 
frequency, the Choppers will come out of their refract<X"y period in such a valley. These 
choppers theref<X"e will have to wait f<X" the envelope amplitude to increase above a 
certain value, bef<X"e they receive anew a stimulatioo. This waiting period nullifies the 
effect of the variatioo of the refractory period of the Choppers, and thus synchronizes the 
Choppers for low modulatioo frequencies. A secoo.d effect of this waiting period is that 
in this case the firing rate of the Choppers matches the modulation frequency. When the 
modulation frequency becomes higher than the maximum chopping frequency, the 
Choppers will fire only every secood period, but will still be synchronized, as can be 
seen between 300Hz and 500Hz in figure 7b. 

5. CONCLUSIONS 

In this article we have shown that it is possible to use our building blocks to build a 
multi-chip system that models part of the audit(X"y pathway. Furtherm<X"e, the fact that 
the spiking neuron chip can be easily biased to function as a group of similar Choppers, 
combined with the relative simplicity of the spike generation mechanism of a single 
neuroo 00 chip, allowed us to gain insight in the process by which chopping neurons in 
the mammalian Cochlear Nucleus synchronize to a particular range of amplitude 
modulation frequencies. 
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