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Abstract 

The power of sampling methods in Bayesian reconstruction of noisy 
signals is well known. The extension of sampling to temporal prob­
lems is discussed. Efficacy of sampling over time is demonstrated 
with visual tracking. 

1 INTRODUCTION 

The problem of tracking curves in dense visual clutter is a challenging one. Trackers 
based on Kalman filters are of limited power; because they are based on Gaussian 
densities which are unimodal they cannot represent simultaneous alternative hy­
potheses. Extensions to the Kalman filter to handle multiple data associations 
(Bar-Shalom and Fortmann, 1988) work satisfactorily in the simple case of point 
targets but do not extend naturally to continuous curves. 

Tracking is the propagation of shape and motion estimates over time, driven by 
a temporal stream of observations. The noisy observations that arise in realistic 
problems demand a robust approach involving propagation of probability distribu­
tions over time. Modest levels of noise may be treated satisfactorily using Gaussian 
densities, and this is achieved effectively by Kalman filtering (Gelb, 1974). More 
pervasive noise distributions, as commonly arise in visual background clutter, de­
mand a more powerful, non-Gaussian approach. 

One very effective approach is to use random sampling. The CONDENSATION al­
gorithm , described here, combines random sampling with learned dynamical models 
to propagate an entire probability distribution for object position and shape, over 
time. The result is accurate tracking of agile motion in clutter, decidedly more 
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robust than what has previously been attainable by Kalman filtering. Despite the 
use of random sampling, the algorithm is efficient, running in near real-time when 
applied to visual tracking. 

2 SAMPLING METHODS 

A standard problem in statistical pattern recognition is to find an object paramet­
erised as x with prior p(x), using data z from a single image. The posterior density 
p(xlz) represents all the knowledge about x that is deducible from the data. It can 
be evaluated in principle by applying Bayes' rule (Papoulis, 1990) to obtain 

p(xlz) = kp(zlx)p(x) (1) 

where k is a normalisation constant that is independent of x. However p(zlx) may 
become sufficiently complex that p(xlz) cannot be evaluated simply in closed form . 
Such complexity arises typically in visual clutter, when the superfluity of observable 
features tends to suggest multiple, competing hypotheses for x. A one-dimensional 
illustration of the problem is illustrated in figure 1 in which multiple features give 
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Figure 1: One-dimensional observation model. A probabilistic observation 
model allowing for clutter and the possibility of missing the target altogether is 
specified here as a conditional density p( z I x ) . 

rise to a multimodal observation density function p(zlx). 

When direct evaluation of p(xlz) is infeasible, iterative sampling techniques can be 
used (Geman and Geman, 1984; Ripley and Sutherland, 1990; Grenander et al., 
1991; Storvik, 1994). The factored sampling algorithm (Grenander et al., 1991). 
generates a random variate x from a distribution p(x) that approximates the pos-
terior p(xlz). First a sample-set {s(1), ... , s(N)} is generated from the prior density 
p(x) and then a sample x = Xi, i E {I, ... , N} is chosen with probability 

p(zlx = s(i») 
7ri = N . . 

Lj=l p(zlx = s(3») 

Sampling methods have proved remarkably effective for recovering static objects 
from cluttered images. For such problems x is multi-dimensional, a set of parameters 
for curve position and shape. In that case the sample-set {s(1), ... , s(N)} represents 
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a distribution of x-values which can be seen as a distribution of curves in the image 
plane, as in figure 2. 

Figure 2: Sample-set representation of shape distributions for a curve with 
parameters x, modelling the outline (a) of the head of a dancing girl. Each sample 
s(n) is shown as a curve (of varying position and shape) with a thickness proportional 
to the weight 1r(n). The weighted mean of the sample set (b) serves as an estimator 
of mean shape 

3 THE CONDENSATION ALGORITHM 

The CONDENSATION algorithm is based on factored sampling but extended to ap­
ply iteratively to successive images in a sequence. Similar sampling strategies have 
appeared elsewhere (Gordon et al., 1993; Kitigawa, 1996), presented as develop­
ments of Monte-Carlo methods. The methods outlined here are described in detail 
elsewhere. Fuller descriptions and derivation of the CONDENSATION algorithm are 
in (Isard and Blake, 1996; Blake and Isard, 1997) and details of the learning of 
dynamical models, which is crucial to the effective operation of the algorithm are 
in (Blake et al., 1995). 

Given that the estimation process at each time-step is a self-contained iteration 
of factored sampling, the output of an iteration will be a weighted, time-stamped 
sample-set, denoted s~n), n = 1, ... I N with weights 1r~n) I representing approxim­
ately the conditional state-density p(xtIZe) at time t, where Zt = (Zl, ... I Zt). How 
is this sample-set obtaine-d? Clearly the process must begin with a prior density 
and the effective prior for time-step t should be p(xtIZt-t}. This prior is of course 
multi-modal in general and no functional representation of it is available. It is de-
rived from the sample set representation (S~~)ll 1r~~)1)' n = 1, ... , N of p(Xt-lIZt-l), 
the output from the previous time-step, to which prediction must then be applied. 

The iterative process applied to the sample-sets is depicted in figure 3. At the 
top of the diagram, the output from time-step t - 1 is the weighted sample-set 
{(st)l' 1rt?l) , n = I, . .. ,N}. The aim is to maintain, at successive time-steps, 
sample sets of fixed size N, so that the algorithm can be guaranteed to run within 
a given computational resource. The first operation therefore is to sample (with 
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p(x1 1 Z,-1 ) 

p(x11 Z,) 

Figure 3: One time-step in the CONDENSATION algorithm. Blob centres rep­
resent sample values and sizes depict sample weights. 

replacement) N times from the set {S~~)l}' choosing a given element with probability 

ll't)l' Some elements, especially those with high weights, may be chosen several 
times, leading to identical copies of elements in the new set. Others with relatively 
low weights may not be chosen at all. 

Each element chosen from the new set is now subjected to a predictive step. {The 
dynamical model we generally use for prediction is a linear stochastic differential 
equation (s.d.e.) learned from training sets of sample object motion (Blake et al., 
1995).) The predictive step includes a random component, so identical elements 
may now split as each undergoes its own independent random motion step. At this 
stage, the sample set {s~n)} for the new time-step has been generated but, as yet, 
without its weights; it is approximately a fair random sample from the effective 
prior density p(XtIZt-l) for time-step t. Finally, the observation step from factored 
sampling is applied, generating weights from the observation density p(Zt IXt) to 
obtain the sample-set representation {(s~n), ll'}n»} of state-density for time t. 

The algorithm is specified in detail in figure 4. The process for a single time-step 
consists of N iterations to generate the N elements of the new sample set . Each 
iteration has three steps, detailed in the figure, and we comment below on each. 

1. Select nth new sample s~(n) to be some S~~l from the old sample set, 

sampled with replacement with probability 1l'~~1' This is achieved efficiently 

by using cumulative weights C~~l (constructed in step 3). 

2. Predict by sampling randomly from the conditional density for the dy­
namical model to generate a sample for the new sample-set. 

3. Measure in order to generate weights ll'~n) for the new sample. Each weight 
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is evaluated from the observation density function which, being multimodal 
in general, "infuses" multi modality into the state density. 

Iterate 

From the "old" sample-set {s~~t 7ltL c~~t n ;;:: 1, ... , N} at time-step t - 1, 
construct a "new" sample-set {s~n),7r~n),c~n)},n;;:: 1, .. . ,N for time t. 

Construct the nth of N new samples as follows: 

1. Select a sample s~(n) as follows: 
(a) generate a random number r E [0,1], uniformly distributed. 

(b) find, by binary subdivision, the smallest j for which C~~l ~ r 
(c) set s~(n) = S~~l 

2. Predict by sampling from 

p(XtIXt-l = S/~~)l) 

to choose each s~n). 
3. Measure and weight the new position in terms of the measured fea­

tures Zt: 

then normalise so that Ln 7r~n) ;;:: 1 and store together with cumulative 

Probability as (s(n) 7r(n) c(n») where t , t , t 

(0) 
Ct 

(n) 
Ct 

0, 
(n-l) + (n) 

Ct 7rt (n = 1 .. . N). 

Figure 4: The CONDENSATION algorithm. 

At any time-step, it is possible to "report" on the current state, for example by 
evaluating some moment of the state density as 

N 

£(f(xd] ;;:: l:= 7r~n) f (s~n») . (2) 
n=l 

4 RESULTS 

A good deal of experimentation has been performed in applying the CONDENSATION 

algorithm to the tracking of visual motion, including moving hands and dancing 
figures. Perhaps one of the most stringent tests was the tracking of a leaf on a bush, 
in which the foreground leaf is effectively camouflaged against the background. 

A 12 second (600 field) sequence shows a bush blowing in the wind, the task being 
to track one particular leaf. A template was drawn by hand around a still of one 
chosen leaf and allowed to undergo affine deformations during tracking. Given that 
a clutter-free training sequence is not available, the motion model was learned by 
means of a bootstrap procedure (Blake et al., 1995). A tracker with default dynam­
ics proved capable of tracking the first 150 fields of a training sequence before losing 


