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Abstract 

A self-organizing architecture is developed for image region classi­
fication. The system consists of a preprocessor that utilizes multi­
scale filtering, competition, cooperation, and diffusion to compute a 
vector of image boundary and surface properties, notably texture 
and brightness properties. This vector inputs to a system that 
incrementally learns noisy multidimensional mappings and their 
probabilities. The architecture is applied to difficult real-world 
image classification problems, including classification of synthet­
ic aperture radar and natural texture images, and outperforms a 
recent state-of-the-art system at classifying natural textures. 

1 INTRODUCTION 

Automatic processing of visual scenes often begins by detecting regions of an image 
with common values of simple local features, such as texture, and mapping the pat­
tern offeature activation into a predicted region label. We develop a self-organizing 
neural architecture, called the ARTEX algorithm, for automatically extracting a 
novel and effective array of such features and mapping them to output region label­
s. ARTEX is made up of biologically motivated networks, the Boundary Contour 
System and Feature Contour System (BCS/FCS) networks for visual feature extrac­
tion (Cohen & Grossberg, 1984; Grossberg & Mingolla, 1985a, 1985b; Grossberg 
& Todorovic, 1988; Grossberg, Mingolla, & Williamson, 1995), and the Gaussian 
ARTMAP (GAM) network for classification (Williamson, 1996). 

ARTEX is first evaluated on a difficult real-world task, classifying regions of synthet­
ic aperture radar (SAR) images, where it reliably achieves high resolution (single 
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pixel) classification results, and creates accurate probability maps for its class pre­
dictions. ARTEX is then evaluated on classification of natural textures, where it 
outperforms the texture classification system in Greenspan, Goodman, Chellappa, 
& Anderson (1994) using comparable preprocessing and training conditions. 

2 FEATURE EXTRACTION NETWORKS 

Filled-in surface brightness. Regions of interest in an image can often be seg­
mented based on first-order differences in pixel intensity. An improvement over raw 
pixel intensities can be obtained by compensating for variable illumination of the 
image to yield a local brightness feature. A further improvement over local bright­
ness features can be obtained with a surface brightness feature, which is obtained by 
smoothing local brightness values when they belong to the same region, while main­
taining differences when they belong to different regions. Such a procedure tends 
to maximize the separability of different regions in brightness space by minimizing 
within-region variance while maximizing between-region variance. 

In Grossberg et al. (1995) a multiple-scale BCS/FCS network was used to process 
noisy SAR images for use by human operators by normalizing and segmenting the 
SAR intensity distributions and using these transformed data to fill-in surface rep­
resentations that smooth over noise while maintaining informative structures. The 
single-scale BCS/FCS used here employs the middle-scale BCS/FCS used in that 
study. The BCS/FCS equations and parameters are fully described in Grossberg 
et al. (1995). The BCS/FCS is herein applied to SAR images that are spatially 
consolidated to half the size (in each dimension) of the images used in that study, 
and so is comparable to the large-scale BCS/FCS used there. 

Multiple-scale oriented contrast. In addition to surface brightness, another 
image property that is useful for region segmentation is texture. One popular ap­
proach for analyzing texture, for which there is a great deal of supporting biological 
and computational evidence, decomposes an image, at each image location, into a 
set of energy measures at different oriented spatial frequencies. This may be done 
by applying a bank of orientation-selective bandpass filters followed by simple non­
linearities and spatial pooling, to extract multiple-scale oriented contrast features. 
The early stages of the BCS, which define a Static Oriented Constrast (or SOC) 
filtering network, carry out these operations, and variants of them have been used 
in many texture segregation algorithms (Bergen, 1991; Greenspan et al., 1994). 

Here, the SOC network produces K = 4 oriented contrast features at each of four s­
patial scales. The first stage of the SOC network is a shunting on-center off-surround 
network that compensates for variable illumination, normalizes, and computes ratio 
contrasts in the image. Given an input image, I, the output at pixel (i,i) and scale 
9 in the first stage of the SOC network is 

9 _ Iij - (Gg * I)ij - DE 
aij - D + Iij + (Gg * I)ij , ( 1) 

where E = 0.5, and Gg is a Gaussian kernel defined by 

Gfj(p, q) = -2 1 2 exp[-«i - p)2 + (j - q)2)/20";], (2) 
'frO" 9 

with O"g = 2g , for the spatial scales 9 = 0,1,2,3. The value of D is determined by 
the range of pixel intensities in the input image. We use D=2000 for SAR images 
and D = 255 for natural texture images. The next stage obtains a local measure of 
orientational contrast by convolving the output of (1) with Gabor filters, H!, which 
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are defined at four orientations, and then full-wave rectifying the result: 

bfjk = I(HZ * ag)ij I· (3) 

The horizontal Gabor filter (k = 0) is defined by: 

HfJo(p, q) = Grj(p, q) . sin[0.757r(j - q)/ug] . (4) 

Orientational contrast responses may exhibit high spatial variability. A smooth, 
reliable measure of orientational contrast is obtained by spatially pooling the re­
sponses within the same orientation: 

e!jk = (Gg * bt)ij. (5) 

Equation (5) yields an orientationaliy variant, or OV, representation of oriented 
contrast. A further optional stage yields an orientationaliy invariant, or 01, repre­
sentation by shifting the oriented responses at each scale into a canonical ordering, 
to yield a common representation for rotated versions of the same texture: 

d!jk = erjkl where k' = [k + arg ~~ (cfjk ll )] mod K. (6) 

3 CLASSIFICATION NETWORK 

GAM is a constructive, incremental-learning network which self-organizes internal 
category nodes that learn a Gaussian mixture model of the M-dimensional input 
space, as well as mappings to output class labels. Here, mappings are learned 
from 17 -dimensional input vectors (composed of a filled-in brightness feature and 
16 oriented contrast features) to a class label representing a shadow, road, grass, or 
tree region. The ph category's receptive field is parametrized by two M-dimensional 
vectors: its mean, Pj, and standard deviation, ifj . A scalar, nj, also represents the 
node's cumulative credit. Category j is activated only if its match, Gj , satisfies 
the match criterion, which is determined by a vigilance parameter, p. Match is a 
measure, obtained from the category's unit-height Gaussian distribution, of how 
close an input, X, is to the category's mean, relative to its standard deviation: 

( 1~(Xi-l'"i)2) Gj = exp -- L- J • 
2 i=l Uji (7) 

The match criterion is a threshold: the category is activated only if Gj > Pi other­
wise, the category is reset. The input strength, gj, is determined by 

n' 
gj = M J Gj if Gj > Pi gj = 0 otherwise. (8) 

TIi=l Uji 

The category's activation, Yj, which represents P(jlx), is obtained by 
g' Y. _ J 

J - N' 
D + Ll=l g, 

(9) 

where N is the number of categories and D is a shunting decay term that maintains 
sensitivity to the input magnitude in the activation level (D = 0.01 here). 

When category j is first chosen, it learns a permanent mapping to the output class, 
k, associated with the current training sample. All categories that map to the same 
class prediction belong to the same ensemble: j E E(k). Each time an input is 
presented, the categories in each ensemble sum their activations to generate a net 
probability estimate, Zk, of the class prediction k that they share: 

Zk = L Yj· 
jEE(k) 

(10) 
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The system prediction, }(, is determined by the maximum probability estimate, 

K = argmax(zk), (11) 
k 

which determines the chosen ensemble. Once the class prediction K is chosen, we 
obtain the category's "chosen-ensemble" activation, Y;, which represents P(jlx, K): 

Y; = L: Yj if j E E(K); Y; = 0 otherwise. (12) 
lEE(K) Yl 

If K is the correct prediction, then the network resonates and learns; otherwise, 
match tracking is invoked: p is raised to the average match of the chosen ensemble. 

p = exp (-~ L Y; t (Xi ; .:ji) 2) . 
jEE(K) i=l l' 

(13) 

In addition, all categories in the chosen ensemble are reset. Equations (8)-(11) are 
then re-evaluated. Based on the remaining non-reset categories, a new prediction 
K in (11), and its corresponding ensemble, are chosen. This automatic search cycle 
continues until the correct prediction is made, or until all committed categories 
are reset and an uncommitted category is chosen. Upon presentation of the next 
training sample, p is reassigned its baseline value: p = p. Here, p ~ O. 

When category j learns, nj is updated to represent the amount of training data the 
node has been assigned credit for: 

nj := nj + Y; • (14) 

The vectors flj and iij are then updated to learn the input statistics: 

I'ji (1 • -1) +.-1 - Yj nj I'ji Yj nj Xi, (15) 

(16) 

GAM is initialized with N = O. When a category is first chosen, N is incremented, 
and the new category, indexed by J =N, is initialized with nJ = 1, fl = X, G'ji =;, 
and with a permanent mapping to the correct output class. Initializing G'ji = ; 
is necessary to make (7) and (8) well-defined. Varying; has a marked effect on 
learning: as ; is raised, learning becomes slower, but fewer categories are created. 
The input vectors are normalized to have the same standard deviation in each 
dimension so that; has the same meaning in each dimension. 

4 SIMULATION RESULTS 

Classifying SAR image regions. Figure 1 illustrates the classification results 
obtained on one SAR image after training on the other eight images in the data 
set. The final classification result (bottom, right) closely resembles the hand-labeled 
regions (middle, left) . The caption summarizes the average results obtained on all 
nine images. ARTEX learns this problem very quickly, using a small number of 
self-organized categories, as shown in Figure 2 (left). The best classification result 
of 84.2% correct is obtained by filling-in the probability estimates from equation 
(10) within the BCS boundaries, using an FCS diffusion equation as described in 
Grossberg et al. (1995). These filled-in probability estimates predict the actual 
classification rates with remarkable accuracy (Figure 2, right). 

Classifying natural textures. ARTEX performance is now compared to that 
of a texture analysis system described in Greenspan et al. (1994), which we re­
fer to as the "hybrid system" because it is a hybrid architecture made up of a 
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Figure 1: Results are shown on a 180x180 pixel SAR image, which is one of nine 
images in data set. Top row: Center/surround, first stage output (left); BCS bound­
aries to FCS filling-in (middle); final BCS/FCS filled-in output (right). Note that 
BCS accurately localizes region boundaries, and that FCS improves appearance by 
smoothing intensities within regions while maintaining sharp differences between 
regions. Middle row: Hand-labeled regions corresponding to shadow, road, grass, 
trees (left); Gaussian classifier results based on center/surround feature (middle, 
59.6% correct), and based on filled-in feature (right, 70.7%). Note that filling­
in greatly improves classification by reducing brightness variability within regions. 
However, the lack of textural information results in errors, such as the misclassifi­
cation of the vertical road as a shadow region. Bottom row: GAM results (1' = 4) 
based on 16 SOC features in addition to the filled-in brightness feature: using the 
OV representation (left, 81.9%), using the 01 representation (middle, 83.2%), and 
using filled-in 01 prediction probabilities (right, 84.2%). With the OV representa­
tion (bottom, left), the thin vertical road is misclassified as shadows because there 
are no thin vertical roads in the training set. With the 01 representation, however 
(bottom, middle), the road is classified correctly because the training set includes 
thin roads at other orientations. Finally, the classification results are improved by 
filling-in the prediction probabilities from equation (10) within the BCS boundaries, 
thereby taking advantage of spatial and structural context (bottom, right). 
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Figure 2: Left: classification rate is plotted as a function of the number of categories 
after training on different sized subsets of the SAR training data: (left-to-right) 
0.01 %, 0.1%, 1%, 10%, and 100% of the training set. Right: classification rate is 
plotted as a function of filled-in probability estimates. 

log-Gabor pyramid representation, followed by unsupervised k-means clustering in 
the feature space, followed by batch learning of mappings from clusters to output 
classes using a rule-based classifier. The hybrid system uses three pyramid levels 
and four orientations at each level. Each level of the pyramid is produced via three 
blurring/decimation steps, resulting in an 8x8 pixel resolution. For a fair compari­
son, sufficient blurring/decimation was added as a postprocessing step to ARTEX 
features to yield the same net amount of blurring. Both ARTEX and the hybrid 
system use an OV representation for these problems because the textures are not 
rotated. The first task is classification of a library of ten separate structured and 
unstructured textures after training on different example images. ARTEX obtains 
better performance, achieving 96.3% correct after 40 training epochs (with i = 1, 
34 categories) versus 94.3% for the hybrid system. Even after only one training 
epoch, ARTEX achieves better results (94.9%, 23 categories). The second task 
(Figure 3) is classification of a five-texture mosaic, which requires discriminating 
texture boundaries, after training on examples of the five textures, plus an addi­
tional texture (sand). ARTEX achieves 93.6% correct after 40 training epochs (33 
categories), and produces results which appear to be better than those produced by 
the hybrid system on a similar problem (see Greenspan et al., 1994, Figure 5). 

In summary, the ARTEX system demonstrates the utility of combining BCS tex­
ture and FCS brightness measures for image preprocessing. These features may 
be effectively classified by the GAM network, whose self-calibrating matching and 
search operations enable it to carry out fast, incremental , distributed learning of 
recognition categories and their probabilities. BCS boundaries may be further used 
to constrain the diffusion of these probabilities according to FCS rules to improve 
prediction probability. 
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Figure 3: Left: mosaic of five natural textures. Right: ARTEX classification (93.6% 
correct) after training on examples of five textures and an additional texture (sand). 
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