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Abstract 

We propose a hierarchical scheme for rapid learning of context dependent 
"skills" that is based on the recently introduced "Parameterized Self­
Organizing Map" ("PSOM"). The underlying idea is to first invest some 
learning effort to specialize the system into a rapid learner for a more 
restricted range of contexts. 

The specialization is carried out by a prior "investment learning stage", 
during which the system acquires a set of basis mappings or "skills" for 
a set of prototypical contexts. Adaptation of a "skill" to a new context 
can then be achieved by interpolating in the space of the basis mappings 
and thus can be extremely rapid. 

We demonstrate the potential of this approach for the task of a 3D visuo­
motor map for a Puma robot and two cameras. This includes the for­
ward and backward robot kinematics in 3D end effector coordinates, the 
2D+2D retina coordinates and also the 6D joint angles. After the invest­
ment phase the transformation can be learned for a new camera set-up 
with a single observation. 

1 Introduction 

Most current applications of neural network learning algorithms suffer from a large number 
of required training examples. This may not be a problem when data are abundant, but in 
many application domains, for example in robotics, training examples are costly and the 
benefits of learning can only be exploited when significant progress can be made within a 
very small number of learning examples. 
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In the present contribution, we propose in section 3 a hierarchically structured learning ap­
proach which can be applied to many learning tasks that require system identification from 
a limited set of observations. The idea builds on the recently introduced "Parameterized 
Self-Organizing Maps" ("PSOMs"), whose strength is learning maps from a very small 
number of training examples [8, 10, 11]. 
In [8], the feasibility of the approach was demonstrated in the domain of robotics, among 
them, the learning of the inverse kinematics transform of a full 6-degree of freedom (DOF) 
Puma robot. In [10], two improvements were introduced, both achieve a significant in­
crease in mapping accuracy and computational efficiency. In the next section, we give a 
short summary of the PSOM algorithm; it is decribed in more detail in [11] which also 
presents applications in the domain of visual learning. 

2 The PSOM Algorithm 

A Parameterized Self-Organizing Map is a parametrized, m-dimensional hyper-surface 
M = {w(s) E X ~ rn.dls E S ~ rn.m} that is embedded in some higher-dimensional 
vector space X. M is used in a very similar way as the standard discrete self-organizing 
map: given a distance measure dist(x, x') and an input vector x, a best-match location 
s*(x) is determined by minimizing 

s*:= argmin dist(x, w(s)) (1) 
SES 

The associated "best-match vector" w(s*) provides the best approximation of input x in the 
manifold M. If we require dist(·) to vary only in a subspace X in of X (i.e., dist( x, x') = 
dist(Px, Px/), where the diagonal matrix P projects into xin), s* (x) actually will only 
depend on Px. The projection (l-P)w(s* (x)) E x out ofw(s* (x)) lies in the orthogonal 
subspace x out can be viewed as a (non-linear) associative completion of a fragmentary 
input x of which only the part Px is reliable. It is this associative mapping that we will 
exploit in applications of the PSOM. 

X out 
3 
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Figure 1: Best-match s* and associative completion w(s*(x)) of 
input Xl, X2 (Px) given in the input subspace Xin. Here in this 
simple case, the m = 1 dimensional manifold M is constructed 
to pass through four data vectors (square marked). The left side 
shows the d = 3 dimensional embedding space X = xin X X out 

and the right side depicts the best match parameter s* (x) parameter 
manifold S together with the "hyper-lattice" A of parameter values 
(indicated by white squares) belonging to the data vectors. 

M is constructed 
as a manifold that passes 
through a given set D of 
data examples (Fig. I de­
picts the situation schemat­
ically). To this end, we 
assign to each data sam­
ple a point a E Sand 
denote the associated data 
sample by Wa. The set A 
of the assigned parameter 
values a should provide a 
good discrete "model" of 
the topology of our data set 
(Fig. I right). The assign­
ment between data vectors 
and points a must be made 

in a topology preserving fashion to ensure good interpolation by the manifold M that is 
obtained by the following steps. 
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For each point a E A, we construct a "basis function" H(·, a; A) or simplified I H(·, a) : 
S ~ 1R that obeys ( i) H (ai, aj) = 1 for i = j and vanishes at all other points of A i =J j 
(orthonormality condition,) and (ii) EaEA H (a, s) = 1 for '<Is ("partition of unity" condi­
tion.) We will mainly be concerned with the case of A being a m-dimensional rectangular 
hyper-lattice; in this case, the functions H(·, a) can be constructed as products of Lagrange 
interpolation polynomials, see [11] . Then, 

W(s) = L H(s, a) Wa· 
aEA 

(2) 

defines a manifold M that passes through all data examples. Minimizing dist(·) in Eq. 1 
can be done by some iterative procedure, such as gradient descent or - preferably - the 
Levenberg-Marquardt algorithm [11]. This makes M into the attractor manifold of a (dis­
crete time) dynamical system. Since M contains the data set D, any at least m-dimensional 
"fragment" of a data example x = wED will be attracted to the correct completion w. 
Inputs x ¢ D will be attracted to some approximating manifold point. 

This approach is in many ways the continuous analog of the standard discrete self­
organizing map. Particularly attractive features are (i) that the construction of the map 
manifold is direct from a small set of training vectors, without any need for time con­
suming adaptation sequences, (ii) the capability of associative completion, which allows 
to freely redefine variables as inputs or outputs (by changing dist(·) on demand, e.g. one 
can reverse the mapping direction), and (iii) the possibility of having attractor manifolds 
instead of just attractor points. 

3 Hierarchical PSOMs: Structuring Learning 

Rapid learning requires that the structure of the learner is well matched to his task. How­
ever, if one does not want to pre-structure the learner by hand, learning again seems to be 
the only way to achieve the necessary pre-structuring. This leads to the idea of structuring 
learning itself and motivates to split learning into two stages: 
(i) The earlier stage is considered as an "investment stage" that may be slow and that may 
require a larger number of examples. It has the task to pre-structure the system in such a 
way that in the later stage, 
(ii) the now specialized system can learn fast and with extremely few examples. 

To be concrete, we consider specialized mappings or "skills", which are dependent on 
the state of the system or system environment. Pre-structuring the system is achieved by 
learning a set of basis mappings, each in a prototypical system context or environment state 
("investment phase".) This imposes a strong need for an efficient learning tool- efficient 
in particular with respect to the number of required training data points. 

The PSOM networks appears as a very attractive solution: Fig. 2 shows a hierarchical 
arrangement of two PSOM. The task of mapping from input to output spaces is learned -
and performed, by the "Transformation-PSOM" ("T-PSOM"). 

During the first learning stage, the investment learning phase the T-PSOM is used to learn 
a set of basis mappings Tj : Xl +-t X2 or context dependent "skills" is constructed in the 
"T-PSOM", each of which gets encoded as a internal parameter or "weight" set Wj . The 

1 In contrast to kernel methods, the basis functions may depend on the relative POSition to all other 
knots. However, we drop in our notation the dependency H (a, s) = H (a, s; A) on the latter. 
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Figure 2: The transforming ''T-PSOM'' maps between input and output spaces (changing direction 
on demand). In a particular environmental context, the correct transformation is learned, and encoded 
in the internal parameter or weight set w. Together with an characteristic environment observation 
Uref, the weight set w is employed as a training vector for the second level "Meta-PSOM". After 
learning a structured set of mappings, the Meta-PSOM is able to generalizing the mapping for a new 
environment. When encountering any change, the environment observation Uref gives input to the 
Meta-PSOM and determines the new weight set w for the basis T-PSOM. 

second level PSOM ("Meta-PSOM") is responsible for learning the association between 
the weight sets Wj of the first level T-PSOM and their situational contexts. 
The system context is characterized by a suitable environment observation, denoted ure /' 

see Fig. 2. 
The context situations are chosen such that the associated basis mappings capture already a 
significant amount of the underlying model structure, while still being sufficiently general 
to capture the variations with respect to which system environment identification is desired. 
For the training of the second level Meta-PSOM each constructed T-PSOM weight set Wj 

serves together with its associated environment observation ure/,j as a high dimensional 
training data vector. 

Rapid learning is the return on invested effort in the longer pre-training phase. As a re­
sult, the task of learning the "skill" associated with an unknown system context now takes 
the form of an immediate Meta-PSOM --+ T-PSOM mapping: the Meta-PSOM maps the 
new system context observation ure/,new into the parameter set Wnew for the T-PSOM. 
Equipped with Wnew , the T-PSOM provides the desired mapping Tnew. 

4 Rapid Learning of a Stereo Visuo-motor Map 

In the following, we demonstrate the potential of the investment learning approach, with 
the task of fast learning of 3D vi suo-motor maps for a robot manipulator seen by a pair of 
movable cameras. Thus, in this demonstration, each situated context is given by a particular 
camera arrangement, and the assicuated "skill" is the mapping between camera and robot 
coordinates. 
The Puma robot is positioned behind a table and the entire scene is displayed on two win­
dows on a computer monitor. By mouse-pointing, a user can, for example, select on the 
monitor one point and the position on a line appearing in the other window, to indicate a 
good position for the robot end effector, see Fig. 3. This requires to compute the transfor­
mation T between pixel coordinates U = (uL , uR ) on the monitor images and correspond­
ing world coordinates if in the robot reference frame - or alternatively - the corresponding 
six robot joint angles (j (6 DOF). Here we demonstrate an integrated solution, offering both 
solutions with the same network. 

The T-PSOM learns each individual basis mapping Tj by visiting a rectangular grid set 
of end effector positions ei (here a 3x3x3 grid in if of size 40 x 40 x 30cm3) jointly with 
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Figure 3: Rapid learning of the 3D visuo-motor coordination for two cameras. The basis T-PSOM 
(m = 3) is capable of mapping to and from three coordinate systems: Cartesian robot world co­
ordinates, the robot joint angles (6-DOF), and the location of the end-effector in coordinates of the 
two camera retinas. Since the left and right camera can be relocated independently, the weight set of 
T-PSOM is split, and parts W L, W R are learned in two separate Meta-PSOMs ("L" and "R"). 

the joint angle tuple ~ and the location in camera retina coordinates (2D in each camera) 
ut, uf· Thus the training vectors wai for the construction of the T-PSOM are the tuples 
( ~ ~ -+L ..... R 
Xi, (}i, U i 'Ui ). 

However, each Tj solves the mapping task only for the current camera arrangement, for 
which Tj was learned. Thus there is not yet any particular advantage to other, specialized 
methods for camera calibration [1]. The important point is, that we now will employ the 
Meta-PSOM to interpolate in the space of the mappings {Tj }. 

To keep the number of prototype mappings manageable, we reduce some DOFs of the 
cameras by calling for fixed focal length. camera tripod height. and twist joint. To constrain 
the elevation and azimuth viewing angle. we require one land mark f.!ix to remain visible 
in a constant image position. This leaves two free parameters per camera, that can now 
be determined by one extra observation of a chosen auxiliary world reference point f.re!. 
We denote the camera image coordinates of f.re! by Ure! = (u~e! ' u::e!). By reuse of the 
cameras as "environment sensor", Ure! now implicitly encodes the two camera positions. 

In the investing pre-training phase, nine mappings T j are learned by the T-PSOM, each 
camera visiting a 3 x 3 grid. sharing the set of visited robot positions f.i. As Fig. 2 suggests, 
normal1y the entire weight set w serves as part of the training vector to the Meta-PSOM. 
Here the problem becomes factorized since the left and right camera change tripod place 
independently: the weight set of the T-PSOM is split, and the two parts can be learned in 
separate Meta-PSOMs. Each training vector Waj for the left camera Meta-PSOM consists 
of the context observation u~e! and the T-PSOM weight set part w L = (uf,···, U~7) 
(analogous the right camera Meta-PSOM.) 

This enables in the following phase the rapid learning, for new. unknown camera places. 
On the basis of one single observation Ure!. the desired transformation T is constructed. 
As visualized in Fig. 3. Ure! serves as the input to the second level Meta-PSOMs. Their 
outputs are interpolations between previously learned weight sets and they project directly 
into the weight set of the basis level T-PSOM. 

The resulting T-PSOM can map in various directions. This is achieved by specifying a 
suitable distance function dist(·) via the projection matrix P, e.g.: 

i(u) DUI-tX ( .... 
I'T-PSOM u; (3) 
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(4) 

(5) 

(6) 

Table 1 shows experimental results averaged over 100 random locations ~ (from within the 
range of the training set) seen in 10 different camera set-ups, from within the 3 x 3 square 
grid of the training positions, located in a normal distance of about 125 cm (center to work 
space center, 1 m2 , total range of about 55-21Ocm), covering a disparity angle range of 
25°-150°. For identification of the positions ~ in image coordinates, a tiny light source 
was installed at the manipulator tip and a simple procedure automated the finding of u with 
about ±0.8 pixel accuracy. For the achieved precision it is important to share the same 
set of robot positions ~i' and that the sets are topologically ordered, here as a 3x3x3 goal 
position grid (i) and two 3 x 3 camera location (j) grids. 

Direct trained T-PSOMwith 
Mapping Direction T-PSOM Meta-PSOM 

pixel Ul--t Xrobot => Cartesian error !:1x 1.4mm 0.008 4.4mm 0.025 
Cartesian x I--t u => pixel error 1.2pix 0.010 3.3 pix 0.025 

pixel Ul--t o"obot => Cartesian error !:1x 3.8mm 0.023 5.4mm 0.030 

Table 1: Mean Euclidean deviation (mm or pixel) and normalized root mean square error (NRMS) 
for 1000 points total in comparison of a direct trained T-PSOM and the described hierarchical Meta­
PSOM network, in the rapid learning mode after one single observation. 

5 Discussion and Conclusion 

A crucial question is how to structure systems, such that learning can be efficient. In 
the present paper, we demonstrated a hierarchical approach that is motivated by a decom­
position of the learning phase into two different stages: A longer, initial learning phase 
"invests" effort into a gradual and domain-specific specialization of the system. This in­
vestment learning does not yet produce the final solution, but instead pre-structures the 
system such that the subsequently final specialization to a particular solution (within the 
chosen domain) can be achieved extremely rapidly. 

To implement this approach, we used a hierarchical architecture of mappings. While in 
principle various kinds of network types could be used for this mappings, a practically 
feasible solution must be based on a network type that allows to construct the required 
basis mappings from rather small number of training examples. In addition, since we use 
interpolation in weight space, similar mappings should give rise to similar weight sets to 
make interpolation meaningful. PSOM meat this requirements very well, since they allow 
a direct non-iterative construction of smooth mappings from rather small data sets. They 
achieve this be generalizing the discrete self-organizing map [3, 9] into a continuous map 
manifold such that interpolation for new data points can benefit from topology information 
that is not available to most other methods. 

While PSOMs resemble local models [4, 5, 6] in that there is no interference between 
different training points, their use of a orthogonal set of basis functions to construct the 
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map manifold put them in a intennediate position between the extremes of local and of 
fully distributed models. 

A further very useful property in the present context is the ability of PSOMs to work as 
an attractor network with a continuous attractor manifold. Thus a PSOM needs no fixed 
designation of variables as inputs and outputs; Instead the projection matrix P can be used 
to freely partition the full set of variables into input and output values. Values of the latter 
are obtained by a process of associative completion. 

Technically, the investment learning phase is realized by learning a set of prototypical basis 
mappings represented as weight sets of a T-PSOM that attempt to cover the range of tasks 
in the given domain. The capability for subsequent rapid specialization within the domain 
is then provided by an additional mapping that maps a situational context into a suitable 
combination of the previously learned prototypical basis mappings. The construction of 
this mapping again is solved with a PSOM ("Meta"-PSOM) that interpolates in the space 
oJprototypical basis mappings that were constructed during the "investment phase". 

We demonstrated the potential of this approach with the task of 3D visuo-motor mapping, 
learn-able with a single observation after repositioning a pair of cameras. 
The achieved accuracy of 4.4 mm after learning by a single observation, compares very 
well with the distance range 0.5-2.1 m of traversed positions. As further data becomes 
available, the T-PSOM can certainly be fine-tuned to improve the perfonnance to the level 
of the directly trained T-PSOM. 

The presented arrangement of a basis T-PSOM and two Meta-PSOMs demonstrates further 
the possibility to split hierarchical learning in independently changing domain sets. When 
the number of involved free context parameters is growing, this factorization is increasingly 
crucial to keep the number of pre-trained prototype mappings manageable. 
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