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Abstract 

Intermediate and higher vision processes require selection of a sub­
set of the available sensory information before further processing. 
Usually, this selection is implemented in the form of a spatially 
circumscribed region of the visual field, the so-called "focus of at­
tention" which scans the visual scene dependent on the input and 
on the attentional state of the subject. We here present a model for 
the control of the focus of attention in primates, based on a saliency 
map. This mechanism is not only expected to model the functional­
ity of biological vision but also to be essential for the understanding 
of complex scenes in machine vision. 

1 Introduction: "What" and "Where" In Vision 

It is a generally accepted fact that the computations of early vision are massively 
parallel operations, i.e., applied in parallel to all parts of the visual field. This high 
degree of parallelism cannot be sustained in in~ermediate and higher vision because 
of the astronomical number of different possible combination of features. Therefore, 
it becomes necessary to select only a part of the instantaneous sensory input for 
more detailed processing and to discard the rest . This is the mechanism of visual 
selective attention. 

• Present address: Zanvyl Krieger Mind/Brain Institute and Department of Neuros­
cience, 3400 N. Charles Street, The Johns Hopkins University, Baltimore, MD 21218 _ 
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It is clear that similar selection mechanisms are also required in machine vision for 
the analysis of all but the simplest visual scenes. Attentional mechanisms are slowly 
introduced in this field; e .g. , Yamada and Cottrell (1995) used sequential scanning 
by a "focus of attention" in the context of face recognition. Another model for 
eye scan path generation, which is characterized by a strong top-down influence, is 
presented by Rao and Ballard (this volume). Sequential scanning can be applied to 
more abstract spaces, like the dynamics of complex systems in optimization problems 
with large numbers of minima (Tsioutsias and Mjolsness, this volume). 

Primate vision is organized along two major anatomical pathways. One of them is 
concerned mainly with object recognition. For this reason , it has been called the 
What- pathway; for anatomical reasons , it is also known as the ventral pathway. 
The principal task of the other major pathway is the determination of the location 
of objects and therefore it is called the Where pathway or, again for anatomical 
reasons, the dorsal pathway. 

In previous work (Niebur & Koch , 1994), we presented a model for the implement­
ation of the What pathway. The underlying mechanism is "temporal tagging:" it 
is assumed that the attended region of the visual field is distinguished from the 
unattended parts by the temporal fine-structure of the neuronal spike trains. We 
have shown that temporal tagging can be achieved by introducing moderate levels 
of correlation1 between those neurons which respond to attended stimuli. 

How can such synchronicity be obtained? We have suggested a simple, neurally 
plausible mechanism , namely common input to all cells which respond to attended 
stimuli . Such (excitatory) input will increase the propensity of postsynaptic cells to 
fire for a short time after receiving this input, and thereby increase the correlation 
between spike trains without necessarily increasing the average firing rate . 

The subject of the present study is to provide a model of the control system which 
generates such modulating input. We will show that it is possible to construct 
an integrated system of attentional control which is based on neurally plausible 
elements and which is compatible with the anatomy and physiology of the primate 
visual system. The system scans a visual Scene and identifies its most salient parts . 
A possible task would be "Find all faces in this image." We are confident that this 
model will not only further our understanding of the function of biological vision 
but that it will also be relevant for technical applications. 

2 A Simple Model of The Dorsal Pathway 

2.1 Overall Structure 

Figure 1 shows an overview of the model Where pathway. Input is provided in the 
form of digitized images from an NTSC camera which is then analyzed in various 
feature maps. These maps are organized around the known operations in early visual 
cortices. They are implemented at different spatial scales and in a center-surround 
structure akin to visual receptive fields . Different spatial scales are implemented as 
Gaussian pyramids (Adelson , Anderson , Bergen, Burt, & Ogden, 1984). The center 

1 In (Niebur, Koch, & Rosin, 1993), a similar model was developed using periodic 
"40Hz" modulation. The present model can be adapted mutatis mutandis to this type 
of modulation. 
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of the receptive field corresponds to the value of a pixel at level n in the pyramid 
and the surround to the corresponding pixels at level n + 2, level 0 being the image 
in normal size. The features implemented so far are the thr~e principal components 
of primate color vision (intensity, red-green, blue-yellow), four orientations, and 
temporal change. Short descriptions of the different feature maps are presented in 
the next section (2.2). 

We then (section 2.3) address the question of the integration of the input in the 
"saliency map," a topographically organized map which codes for the instantaneous 
conspicuity of the different parts of the visual field . 

Feature Maps 
(multiscale) 

• • • 

Figure 1: Overview of the model Where pathway. Features are computed as center­
surround differences at 4 different spatial scales (only 3 feature maps shown) . They 
are combined and integrated in the saliency map ("SM") which provides input to an 
array of integrate-and-fire neurons with global inhibition. This array ("WTA") has 
the functionality of a winner-take-all network and provides the output to the ventral 
pathway ("V2") as well as feedback to the saliency map (curved arrow) . 

2.2 Input Features 

2.2.1 Intensity 

Intensity information is obtained from the chromatic information of the NTSC signal. 
With R, G, and B being the red, green and blue channels, respectively, the intensity 
I is obtained as 1= (R + G + B)/3. The entry in the feature map is the modulus 



Control of Selective Visual Attention: Modeling the "Where" Pathway 805 

of the contrast, i.e., IIcenter - I~tirrotindl. This corresponds roughly to the sum of 
two single-opponent cells of opposite phase, i.e . bright-center - dark-surround and 
vice-versa. Note, however, that the present version of the model does not reproduce 
the temporal behavior of ON and OFF subfields because we update the activities in 
the feature maps instantaneously with changing visual input. Therefore, we neglect 
the temporal filtering properties of the input neurons. 

2.2.2 Chromatic Input 

Red, green and blue are the pixel values of the RGB signal. Yellow is computed 
as (R + G)/2. At each pixel, we compute a quantity corresponding to the double­
opponency cells in primary visual cortex. For instance , for the red-green filter, we 
firs't compute at each pixel the value of (red-green). From this, we then subtract 
(green-red) of the surround. Finally, we take the absolute value of the result . 

2.2.3 Orientation 

The intensity image is convolved with four Gabor patches of angles 0,45 ,90, and 
135 degrees, respectively. The result of these four convolutions are four arrays of 
scalars at every level of the pyramid. The average orientation is then computed 
as a weighted vector sum. The components in this sum are the four unit vectors 
iii, i = 1, .. .4 corresponding to the 4 orientations, each with the weight Wi. This 
weight is given by the result of its convolution of the respective Gabor patch with 
the image. Let c be this vector for the center pixel, then c = L;=l Wi iii . 

The average orientation vector for the surround, s, is computed analogously. What 
enters in the SM is the center-surround difference, i.e. the scalar product c( s - C). 
This is a scalar quantity which corresponds to the center-surround difference in ori­
entation at every location , and which also takes into account the relative "strength" 
of the oriented edges. 

2.2.4 Change 

The appearance of an object and the segregation of an object from its background 
have been shown to capture attention, even for stimuli which are equiluminant with 
the background (Hillstrom & Yantis, 1994). We incorporate the attentional capture 
by visual onsets and motion by adding the temporal derivative of the input image 
sequence, taking into account chromatic information. More precisely, at each pixel 
we compute at time t and for a time difference tit = 200ms: 

1 
'3{IR(t) - R(t - tit) I + IG(t) - G(t - tit) I + IB(t) - B(t - tit)!} (1) 

2.2.5 Top-Down Information 

Our model implements essentially bottom-up strategies for the rapid selection of 
conspicuous parts of the visual field and does not pretend to be a model for higher 
cognitive functions. Nevertheless, it is straightforward to incorporate some top­
down influence. For instance, in a "Posner task" (Posner, 1980), the subject is 
instructed to attend selectively to one part of the visual field. This instruction can 
be implemented by additional input to the corresponding part of the saliency map. 
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2.3 The Saliency Map 

The existence of a saliency map has been suggested by Koch and Ullman (1985); 
see also the "master map" of Treisman (1988). The idea is that of a topographically 
organized map which encodes information on where salient (conspicuous) objects 
are located in the visual field, but not what these objects are. 

The task of the saliency map is the computation of the salience at every location 
in the visual field and the subsequent selection of the most salient areas or objects. 
At any time, only one such area is selected . The feature maps provide current 
input to the saliency map. The output of the saliency map consists of a spike train 
from neurons corresponding to this selected area in the topographic map which 
project to the ventral ("What") pathway. By this mechanism, they are "tagged" by 
modulating the temporal structure of the neuronal signals corresponding to attended 
stimuli (Niebur & Koch, 1994). 

2.3.1 Fusion Of Information 

Once all relevant features have been computed in the various feature maps, they have 
to be combined to yield the salience, i.e. a scalar quantity. In our model, we solve 
this task by simply adding the activities in the different feature maps, as computed 
in section 2.2, with constant weights. We choose all weights identical except for the 
input obtained from the temporal change. Because of the obvious great importance 
changing stimuli have for the capture of attention, we select this weight five times 
larger than the others. 

2.3.2 Internal Dynamics And Trajectory Generation 

By definition, the activity in a given location of the saliency map represents the 
relative conspicuity of the corresponding location in the visual field. At any given 
time, the maximum of this map is therefore the most salient stimulus. As a con­
sequence, this is the stimulus to which the focus of attention should be directed next 
to allow more detailed inspection by the more powerful "higher" process which are 
not available to the massively parallel feature maps. This means that we have to 
determine the instantaneous maximum of this map. 

This maximum is selected by application of a winner-take-all mechanism. Different 
mechanisms have been suggested for the implementation of neural winner-take-all 
networks (e.g., Koch & Ullman, 1985; Yuille & Grzywacz, 1989). In our model, we 
used a 2-dimensionallayer of integrate-and-fire neurons with strong global inhibition 
in which the inhibitory population is reliably activated by any neuron in the layer. 
Therefore, when the first of these cells fires, it will inhibit all cells (including itself), 
and the neuron with the strongest input will generate a sequence of action potentials. 
All other neurons are quiescent. 

For a static image, the system would so far attend continuously the most conspicuous 
stimulus . This is neither observed in biological vision nor desirable from a functional 
point of view; instead, after inspection of any point, there is usually no reason to 
dwell on it any longer and the next-most salient point should be attended. 

We achieve this behavior by introducing feedback from the winner-take-all array. 
When a spike occurs in the WTA network, the integrators in the saliency map 
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receive additional input with the spatial structure of an inverted Mexican hat, ie. a 
difference of Gaussians. The (inhibitory) center is at the location of the winner which 
becomes thus inhibited in the saliency map and, consequently, attention switches to 
the next-most conspicuous location. The function ofthe positive lobes ofthe inverted 
Mexican hat is to avoid excessive jumping of the focus of attention. If two locations 
are of nearly equal conspicuity and one of them is close to the present focus of 
attention, the next jump will go to the close location rather than to the distant one. 

3 Results 

We have studied the system with inputs constructed analogously to typical visual 
psychophysical stimuli and obtained results in agreement with experimental data. 
Space limitations prevent a detailed presentation of these results in this report. 
Therefore, in Fig. 2, we only show one example of a "real-world image." We choose, 
as an example, an image showing the Caltech bookstore and the trajectory of the 
focus of attention follows in our model. The most salient feature in this image is the 
red banner on the the wall of the building (in the center of the image). The focus of 
attention is directed first to this salient feature. The system then starts to scan the 
image in the order of decreasing saliency. Shown are the 3 jumps following the initial 
focussing on the red banner. The jumps are driven by a strong inhibition-of-return 
mechanism. Experimental evidence for such a mechanims has been obtained recently 
in area 7a of rhesus monkeys (Steinmetz, Connor, Constantinidis, & McLaughlin, 
1994). 

Figure 2: Example image. The black line shows the trajectory of the simulated focus 
of attention over a time of 140 ms which jumps from the center (red banner on wall 
of building) to three different locations of decreasing saliency. 

4 Conclusion And Outlook 

We present in this report a prototype for an integrated system mimicking the control 
of visual selective attention. Our model is compatible with the known anatomy and 
physiology of the primate visual system, and its different parts communicate by 
signals which are neurally plausible. The model identifies the most salient points 
in a visual scenes one-by-one and scans the scene autonomously in the order of 
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decreasing saliency. This allows the control of a subsequently activated processor 
which is specialized for detailed object recognition. 

At present, saliency is determined by combining the input from a set offeature maps 
with fixed weights. In future work, we will generalize our approach by introducing 
plasticity in these weights and thus adapting the system to the task at hand. 
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