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Abstract 

When a sensory system constructs a model of the environment 
from its input, it might need to verify the model's accuracy. One 
method of verification is multivariate time-series prediction: a good 
model could predict the near-future activity of its inputs, much 
as a good scientific theory predicts future data. Such a predict­
ing model would require copious top-down connections to compare 
the predictions with the input. That feedback could improve the 
model's performance in two ways: by biasing internal activity to­
ward expected patterns, and by generating specific error signals if 
the predictions fail. A proof-of-concept model-an event-driven, 
computationally efficient layered network, incorporating "cortical" 
features like all-excitatory synapses and local inhibition- was con­
structed to make near-future predictions of a simple, moving stim­
ulus. After unsupervised learning, the network contained units not 
only tuned to obvious features of the stimulus like contour orienta­
tion and motion, but also to contour discontinuity ("end-stopping") 
and illusory contours. 

1 Introduction 

Somehow, brains make very accurate models of the outside world from their raw 
sensory input . How might brains check and improve those models? What signal is 
there to verify a model of the world? 

The scientific method faces a similar problem: how to verify theories. In science, 
theories are verified by predicting future data, using the implicit assumption that 
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good predictions can only result from good models. By analogy, it is possible that 
brains predict their afferent input (e.g. at the thalamus), and that making such 
predictions and using them as feedback is a unifying design principle of cortex. 
The proof-of-concept model presented here uses unsupervised Hebbian learning to 
predict, pixel-wise, the location of a moving pattern slightly in the future. 

Why try prediction? 

• Predicting future data usually requires a good generative model. For instance: to 
predict the brightness of individual TV pixels even a fraction of a second in advance, 
one would need models of contours, objects, motion, occlusion, shadow, etc. 

• A successful prediction can help filter out input noise, like a Kalman filter. 

• A failed prediction provides a specific, high-dimensional error signal. 

• Prediction is not only possible in cortex-which has massive feedback 
connections-but necessary as well, because those feedback fibers, their target den­
drites, and synaptic integration impose inevitable delays. So for a feedback signal 
to arrive at the cell body "on time," it would need to have been generated tens of 
milliseconds earlier, as a prediction of imminent activity. 

• In this model, "prediction" means producing spikes in advance which will correlate 
with subsequent input spikes. Specifically, the network's goal is to produce at each 
grid point a train of spikes at times Pj which predicts the input train Ik, in the 
sense of maximizing their normalized cross-correlation. The objective function L 
("likeness") can be expressed in terms of a smoothing "bump" function B(t:J;, ty) 
(of spikes at times t:J; and ty) and a correlation function C(trainl, train2, ~t): 

C(P,I, ~T) 

L(P,I,~T) 

exp ( -It:J; T- t yl ) 

L: L: B(Pj + ~t, Ik) 
j k 

C(P, I, ~T) 

JC(P, P, O)C(I, 1,0) 

• In order to avoid a trivial but useless prediction ("the weather tomorrow will be 
just like today;'), one must ensure that a unit cannot usually predict its own firing 
(for example, pick ~t ~ T greater than the autocorrelation time of a spike train). 

2 Model 

The input to the network is a 16 x 16 array of spike trains, with toroidal array 
boundary conditions. The spikes are driven by a "stimulus" bar of excitation one 
unit wide and seven units long, which moves smoothly perpendicular to its orien­
tation behind the array (in a broad circle, so that all orientations and directions 
are represented; Fig. 1A). The stimulus point transiently generates spikes at each 
grid point there according to a Poisson process: the whole array of spikes can be 
visualized as a twinkling, moving contour. 
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Figure 1: A network predicts dynamic patterns. A A moving pattern on 
a grid of spiking pixels describes a slow circle, and drives activity in a network 
above. B The three-layer network learns to predict that activity just before it 
occurs. Forward connections, evolving by Hebbian rules, produce top-level units 
with coarse receptive fields and fine stimulus-tuning (e.g. contour orientation and 
motion). Each spike from a top unit is "bound" (by coincidence detection) with 
the particular spike which triggered it, to produce feedback which is both stimulus­
tuned and spatially specific. A Hebb rule determines how the delayed, predictive 
feedback will drive middle-layer units and be compared to input-layer units. Because 
all connections are excitatory, winner-take-all inhibition within local groups of units 
prevents runaway excitation. 

2.1 Network Structure 

The network has three layers . The bottom layer contains the spiking pixels, and 
the "surprise" units described below. The middle layer, having the same spatial 
resolution as the input, has four coarsely-tuned units per input pixel. And the 
top layer contains the most finely-tuned units, spaced at half the spatial resolution 
(at every fourth gridpoint, i.e. with coarser spatial resolution and larger receptive 
fields). The signal flow is bi-directional [10, 7], with both forward and feedback 
synaptic connections. All connections between units are excitatory, and excitation 
is kept in check by local winner-take-all inhibition (WTA). For example, a given 
input spike can only trigger one spike out of the 16 units directly above it in the 
top layer (Fig. IB). 

Unsupervised learning occurs through two local Hebb-like rules. Forward connec­
tions evolve to make nearby (competing) units strongly anticorrelated-for instance, 
units typically become tuned to different contour orientations and directions of 
motion-while feedback connections evolve to maximally correlate delayed feedback 
signals with their targets. 

2.2 Binary multiplication in single units 

While some neural models implement multiplication as a nonlinear function of the 
sum of the inputs, the spiking model used here implements multiplication as a 
binary operation on two distinct classes of synapses. 
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Figure 2: Multiplicative synapses and surprise detection. A A spiking unit 
multiplies two types of synaptic inputs: the "helper" type increments an internal 
bias without triggering a spike, and the "trigger" type can trigger a spike (*), 
without incrementing, but only if the bias is above a threshold. Spike propagation 
may be discretely delayed, and coincidences of two units fired by the same input 
spike can be detected. B Once the network has generated a (delayed) prediction of 
a given pixel's activity, the match of prediction and reality can be tested by special­
purpose units: one type which detects unpredicted input, the other which detects 
unfulfilled predictions. The firing of either type can drive the network's learning 
rules, so units above can become tuned to consistent patters of failed predictions, 
as occur at discontinuities and illusory contours. 

A helper synapse, when activated by a presynaptic spike, will increment or decre­
ment the postsynaptic voltage without ever initiating a spike. A trigger synapse, on 
the other hand, can initiate a spike (if the voltage is above the threshold determined 
by its WTA neighbors), but cannot adjust the voltage (Fig. 2A; the helper type is 
loosely based on the weak, slow NMDA synapses on cortical apical dendrites, while 
triggers are based on strong, brief AMPA synapses on basal dendrites.) Thus, a 
unit can only fire when both synaptic types are active, so the output firing rate 
approximates the product of the rates of helpers and triggers. Each unit has two 
characteristic timescales: a slower voltage decay time, and the essentially instanta­
neous time necessary to trigger and propagate a spike. 

This scheme has two advantages. One is that a single cell can implement a relatively 
"pure" multiplication of distinct inputs, as required for computations like motion­
detection. The other advantage is that feedback signals, restricted to only helper 
synapses, cannot by themselves drive a cell, so closed positive-feedback loops cannot 
"latch" the network into a fixed state, independent of the input. Therefore, all 
trigger synapses in this network are forward, while all delayed, lateral, and feedback 
connections are of the helper type . 

2.3 Feedback 

There are two issues in feedback: How to construct tuned, specific feedback, and 
what to do with the feedback where it arrives. 



Unsupervised Pixel-prediction 813 

An accurate prediction requires information about the input: both about its exact 
present state, and about its history over nearby space and recent time. In this model, 
those signals are distinct: spatial and temporal specificity is given by each input 
spike, and the spatia-temporal history is given by the stimulus-tuned responses of 
the slow, coarse-grained units in the top layer. Spatially-precise feedback requires 
recombining those signals. (Feedback from V1 cortical Layer VI to thalamus has 
recently been shown to fit these criteria, being both spatially refined and direction­
selective; [3] Grieve & Sillito, 1995). 

In this network, each feedback signal results from the AND of spikes from a input­
layer spike (spatially specific) and the resulting top-layer spike it produces (stimulus­
tuned). This "binding" across levels of specificity requires single-spike temporal 
precision, and may even be one of the perceptual uses for spike timing in cortex 
[1, 9]. 

2.4 Surprise detection 

Once predictive feedback is learned, it can be used in two ways: biasing units toward 
expected activity, and comparing predictions against actual input . Feedback to the 
middle layer is used as a bias signal through helper synapses, by adding the feedback 
to the bias signal. But feedback to the bottom, input-layer is compared with actual 
input by means of special "surprise" units which subtract prediction from input 
(and vice versa). 

Because both prediction and input are noisy signals, their difference is even noisier, 
and must be both temporally smoothed and thresholded to generate a mismatch­
spike. In this model , these prediction/input differences are accomplished pixel-by­
pixel using ad-hoc units designed for the purpose (Fig. 2B). There is no indication 
that cortex operates so simplistically, but there are indications that cortical cells 
are in general sensitive to mismatches between expectation and reality, such as 
discontinuities in space (edges) , in time (on- and off-responses), and in context 
(saliency) . 

The resulting error vector can drive upper-layer units just as the input does, so that 
the network can learn patterns of failed predictions, which typically correspond to 
discontinuities in the stimulus. Learning consistent patterns of bad predictions is 
a completely generic recipe for discovering such discontinuitites, which often cor­
respond closely to visually important features like contour ends, corners, illusory 
contours, and occlusion . 

3 Results and Discussion 

After prolonged exposure to the stimulus, the network produces a blurred cloud of 
spikes which anticipates the actual input spikes, but which also consistently predicts 
input beyond the bar's ends (leading to small clouds of surprise-unit activity track­
ing the ends). The top-level units, driven both by input signals and by feedback , 
become tuned either to different motions of the bar itself (due to Hebbian learning 
of the input), or to different motions of its ends (due to Hebbian learning of the 
surprise-units); see Fig. 3. Cells tuned to contour ends ( "end-stopped") have been 
found in visual cortex [11], although the principles of their genesis are not known . 
Using the same parameters but a different stimlus, the network can also evolve units 
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Figure 3: Single units are highly stimulus-specific. Spikes from all units at 
one location are shown (with time) as a stimlus bar (insets) passes them with six 
different relative positions and motions . Out of the many units available, only one 
or two are active in each layer for a given stimulus configuration. The inactive 
units are tuned to stimulus orientations not shown here. Some units are driven by 
"surprise" units (Figure 2 and text), and respond only to the bar's ends (. and x), 
but not to its center (+). Such responses lag behind those of ordinary units, because 
they must temporally integrate to determine whether a significant mismatch exists 
between the noisy prediction and the noisy input. Spikes from five passes have been 
summed to show the units' reliability. 

which detect the illusory contours present in certain moving gratings. 

Several researchers propose that cortex (or similar networks) might use feedback 
pathways to recreate or regenerate their (static) input [7,4, 10]. The approach here 
requires instead that the network forecast future (dynamic) input [8] . In a general 
sense, predicting the future is a better test of a model than predicting the present, 
in the same sense that scientific theories which predict future experimental data are 
more persuasive than theories which predict existing data. Prediction of the raw 
input has advantages over prediction of some higher-level signal [5, 6, 2]: the raw 
input is the only unprocessed "reality" available to the network, and comparing the 
prediction with that raw input yields the highest-dimensional error vector possible. 

Spiking networks are likewise useful. As in cortex, spikes both truncate small inputs 
and contaminate them with quantization-noise, crucial practical problems which 
real-valued networks avoid. Spike-driven units can implement purely correlative 
computations like motion-detection, and can avoid parasitic positive-feedback loops. 
Spike timing can identify which of many possible inputs fired a given unit, thereby 
making possible a more specific feedback signal. The most practical benefit is that 
interactions among rare events (like spikes) are much faster to compute than real-
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valued ones; this particular network of 8000 units and 200,000 synapses runs faster 
than the workstation can display it. 

This model is an ad-hoc network to illustrate some of the issues a brain might face 
in trying to predict its retinal inputs; it is not a model of cortex. Unfortunately, the 
hypothesis that cortex predicts its own inputs does not suggest any specific circuit 
or model to test. But two experimental tests may be sufficiently model-independent. 
One is that cortical "non-classical" receptive fields should have a temporal structure 
which reflects the temporal sequences of natural stimuli, so a given cell's activity will 
be either enhanced or suppressed when its input matches contextual expectations. 
Another is that feedback to a single cell in thalamus, or to an individual cortical 
apical dendrite, should arrive on average earlier than afferent input to the same 
cell. 
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