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Abstract 

Many classification problems have the property that the only costly 
part of obtaining examples is the class label. This paper suggests 
a simple method for using distribution information contained in 
unlabeled examples to augment labeled examples in a supervised 
training framework. Empirical tests show that the technique de­
scribed in this paper can significantly improve the accuracy of a 
supervised learner when the learner is well below its asymptotic 
accuracy level. 

1 INTRODUCTION 

Supervised learning problems often have the following property: unlabeled examples 
have little or no cost while class labels have a high cost. For example, it is trivial to 
record hours of heartbeats from hundreds of patients. However, it is expensive to 
hire cardiologists to label each of the recorded beats. One response to the expense of 
class labels is to squeeze the most information possible out of each labeled example. 
Regularization and cross-validation both have this goal. A second response is to 
start with a small set of labeled examples and request labels of only those currently 
unlabeled examples that are expected to provide a significant improvement in the 
behavior of the classifier (Lewis & Catlett, 1994; Freund et al., 1993). 

A third response is to tap into a largely ignored potential source of information; 
namely, unlabeled examples. This response is supported by the theoretical work 
of Castelli and Cover (1995) which suggests that unlabeled examples have value in 
learning classification problems. The algorithm described in this paper , referred to 
as SULU (Supervised learning Using Labeled and Unlabeled examples), takes this third 
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path by using distribution information from unlabeled examples during supervised 
learning. Roughly, SULU uses the centroid of labeled and unlabeled examples in the 
neighborhood of a labeled example as a new training example. In this way, SULU 

extracts information about the local variability of the input from unlabeled data. 
SULU is described in Section 2. 

In its use of unlabeled examples to alter labeled examples, SULU is reminiscent of 
techniques for adding noise to networks during training (Hanson, 1990; Matsuoka, 
1992). SULU is also reminiscent of instantiations of the EM algorithm that attempt 
to fill in missing parts of examples (Ghahramani & Jordan, 1994). The similarity 
of SULU to these, and other, works is explored in Section 3. 

SULU is intended to work on classification problems for which there is insufficient la­
beled training data to allow a learner to approach its asymptotic accuracy level. To 
explore this problem, the experiments described in Section 4 focus on the early parts 
of the learning curves of six datasets (described in Section 4.1). The results show 
that SULU consistently, and statistically significantly, improves classification accu­
racy over systems trained with only the labeled data. Moreover, SULU is consistently 
more accurate than an implementation of the EM-algorithm that was specialized 
for the task of filling in missing class labels. From these results, it is reasonable to 
conclude that SULU is able to use the distribution information in unlabeled examples 
to improve classification accuracy. 

2 THE ALGORITHM 

SULU uses standard neural-network supervised training techniques except that it 
occasionally replaces a labeled example with a synthetic example. in addition, the 
criterion to stop training is slightly modified to require that the network correctly 
classify almost every labeled example and a majority of the synthetic examples. For 
instance, the experiments reported in Section 4 generate synthetic examples 50% of 
the time; the stopping criterion requires that 80% of the examples seen in a single 
epoch are classified correctly. The main function in Table 1 provides psuedocode 
for this process. 

The synthesize function in Table 1 describes the process through which an example is 
synthesized. Given a labeled example to use as a seed, synthesize collects neighboring 
examples and returns an example that is the centroid of the collected examples 
with the label of the starting point. synthesize collects neighboring examples until 
reaching one of the following three stopping points. First, the maximum number of 
points is reached; the goal of SULU is to get information about the local variance 
around known points, this criterion guarantees locality. Second, the next closest 
example to the seed is a labeled example with a different label; this criterion prevents 
the inclusion of obviously incorrect information in synthetic examples. Third, the 
next closest example to the seed is an unlabeled example and the closest labeled 
example to that unlabeled example has a different label from the seed; this criterion 
is intended to detect borders between classification areas in example space. 

The call to synthesize from main effectively samples with replacement from a space 
defined by a labeled example and its neighbors. As such, there are many ways in 
which main and synthesize could be written. The principle consideration in this 
implementation is memory; the space around the labeled examples can be huge. 
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Table 1: Pseudocode for SULU 

RANDOH(min,max): 
return a uniformly distributed random integer between min and max, inclusive 

HAIN(B,H): 
/* B - in [0 .. 100], controls the rate of example synthesis */ 
/* H - controls neighborhood size during synthesis */ 
Let: E /* a set of labeled examples */ 

U /* a set of unlabeled examples */ 
N /* an appropriate neural network */ 

Repeat 
Permute E 
Foreach e in E 

if random(0,100) > B then 
e (- SYNTHESIZE(e,E,U,random(2,M» 

TRAIN N using e 
Until a stopping criterion is reached 

SYNTHESIZE(e,E,U,m): 
Let: C /* will hold a collection of examples */ 
For i from 1 to m 

c (- ith nearest neighbor of e in E union U 
if «c is labeled) and (label of c not equal to label of e» then STOP 
if c is not labeled 

cc (- nearest neighbor of c in E 
if label of cc not equal to label of e then STOP 

add c to C 
return an example whose input is the centroid of the 

inputs of the examples in C and has the class label of e. 

3 RELATED WORK 

SULU is similar to two methods of exploring the input space beyond the boundaries of 
the labeled examples; example generation and noise addition. Example generation 
commonly uses a model of how a space deforms and an example of the space to 
generate new examples. For instance, in training a vehicle to turn, Pomerleau 
(1993) used information about how the scene shifts when a car is turned to gener·ate 
examples of turns. The major problem with example generation is that deformation 
models are uncommon. 

By contrast to example generation, noise addition is a model-free procedure. In 
general, the idea is to add a small amount of noise to either inputs (Matsuoka, 
1992), link weights (Hanson, 1990), or hidden units (Judd & Munro, 1993). For 
example, Hanson (1990) replaces link weights with a Gaussian. During a forward 
pass, the Gaussian is sampled to determine the link weight. Training affects both 
the mean and the variance of the Gaussian. In so doing, Hanson's method uses 
distribution information in the labeled examples to estimate the global variance of 
each input dimension. By contrast, SULU uses both labeled and unlabeled examples 
to make local variance estimates. (Experiments, results not shown, with Hanson's 
method indicate that it cannot improve classification results as much as SULU.) 

Finally, there has been some other work on using unclassified examples during 
training. de Sa (1994) uses the co-occurrence of inputs in multiple sensor modali-
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ties to substitute for missing class information. However, sensor data from multiple 
modalities is often not available. Another approach is to use the EM algorithm 
(Ghahramani & Jordan, 1994) which iteratively guesses the value of missing in­
formation (both input and output) and builds structures to predict the missing 
information. Unlike SULU, EM uses global information in this process so it may 
not perform well on highly disjunctive problems. Also SULU may have an advantage 
over EM in domains in which only the class label is missing as that is SULU'S specific 
focus. 

4 EXPERIMENTS 

The experiments reported in this section explore the behavior of SULU on six 
datasets. Each of the datasets has been used previously so they are only briefly 
described in the first subsection. The results of the experiments reported in the 
last part of this section show that SULU significantly and consistently improves 
classification results. 

4.1 DATASETS 

The first two datasets are from molecular biology. Each take a DNA sequence and 
encode it using four bits per nucleotide. The first problem, promoter recognition 
(Opitz & Shavlik, 1994), is: given a sequence of 57 DNA nucleotides, determine if 
a promoter begins at a particular position in the sequence. Following Opitz and 
Shavlik, the experiments in this paper use 234 promoters and 702 non promoters. 
The second molecular biology problem, splice-junction determination (Towell & 
Shavlik, 1994), is: given a sequence of 60 DNA nucleotides, determine if there is a 
splice-junction (and the type of the junction) at the middle of the sequence. The 
data consist of 243 examples of one junction type (acceptors), 228 examples of the 
other junction type (donors) and 536 examples of non-junctions. For both of these 
problems, the best randomly initialized neural networks have a small number of 
hidden units in a single layer (Towell & Shavlik, 1994). 

The remaining four datasets are word sense disambiguation problems (Le. deter­
mine the intended meaning of the word "pen" in the sentence "the box is in the 
pen"). The problems are to learn to distinguish between six noun senses of "line" 
or four verb senses of "serve" using either topical or local encodings (Leacock et al., 
1993) of a context around the target word. The line dataset contains 349 examples 
of each sense. Topical encoding, retaining all words that occur more than twice, 
requires 5700 position vectors. Local encoding, using three words on either side 
of line, requires 4500 position vectors. The serve dataset contains 350 examples of 
each sense. Under the same conditions as line, topical encoding requires 4400 po­
sition vectors while local encoding requires 4500 position vectors. The best neural 
networks for these problems have no hidden units (Leacock et al., 1993). 

4.2 METHODOLOGY 

The following methodology was used to test SULU on each dataset. First, the 
data was split into three sets, 25 percent was set aside to be used for assessing 
generalization, 50 percent had the class labels stripped off, and the remaining 25 
percent was to be used for training. To create learning curves, the training set was 
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Table 2: Endpoints of the learnings curves for standard neural networks and the 
best result for each of the six datasets. 

Training Splice Serve Line 
Set size Promoter Junction Local Topical Local Topical 
smallest 74.7 66.4 53.9 41.8 38.7 40.6 
largest 90.3 85.4 71.7 63.0 58.8 63.3 
asymptotic 95.8 94.4 83.1 75.5 70.1 79.2 

further subdivided into sets containing 5, 10, 15, 20 and 25 percent of the data such 
that smaller sets were always subsets of larger sets. Then, a single neural network 
was created and copied 25 times. At each training set size, a new copy of the network 
was trained under each of the following conditions: 1) using SULU, 2) using SULU 

but supplying only the labeled training examples to synthesize, 3) standard network 
training, 4) using a variant of the EM algorithm that has been specialized to the task 
of filling in missing class labels, and 5) using standard network training but with 
the 50% unlabeled prior to stripping the labels. This procedure was repeated eleven 
times to average out the effects of example selection and network initialization. 

When SULU was used, synthetic examples replaced labeled examples 50 percent of 
the time. Networks using the full SULU (case 1) were trained until 80 percent of 
the examples in a single epoch were correctly classified. All other networks were 
trained until at least 99.5% of the examples were correctly classified. Stopping 
criteria intended to prevent overfitting were investigated, but not used because 
they never improved generalization. 

4.3 RESULTS & DISCUSSION 

Figure 1 and Table 2 summarize the results of these experiments. The graphs 
in Figure 1 show the efficacy of each algorithm. Except for the largest training 
set on the splice junction problem, SULU always results in a statistically significant 
improvement over the standard neural network with at least 97.5 percent confidence 
(according to a one-tailed paired-sample t-test). Interestingly, SULU'S improvement 
is consistently between :t and ~ of that achieved by labeling the unlabeled examples. 
This result contrasts Castelli and Cover's (1995) analysis which suggests that labeled 
examples are exponentially more valuable than unlabeled examples. 

In addition, SUL U is consistently and significantly superior to the instantiation of the 
EM-algorithm when there are very few labeled samples. As the number of labeled 
samples increases the advantage of SULU decreases. At the largest training set sizes 
tested, the two systems are roughly equally effective. 

A possible criticism of SULU is that it does not actually need the unlabeled exam­
ples; the procedure may be as effective using only the labeled training data. This 
hypothesis is incorrect, As shown in Figure 1, SULU when given no unlabeled exam­
ples is consistently and significantly inferior ti SULU when given a large number of 
unlabeled examples. In addition, SULU with no unlabeled examples is consistently, 
although not always significantly, inferior to a standard neural network. 

The failure of SULU with only labeled examples points to a significant weakness 
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Figure 1: The effect of five training procedures on each of six learning problems. In 
each of the above graphs, the effect of standard neural learning has been subtracted 
from all results to suppress the increase in accuracy that results simply from an 
increase in the number of labeled training examples. Observations marked by a '0' 
or a '+' respectively indicate that the point is statistically significantly inferior or 
superior to a network trained using SULU. 

in its current implementation. Specifically, SULU finds the nearest neighbors of 
an example using a simple mismatch counting procedure. Tests of this procedure 
as an independent classification technique (results not shown) indicate that it is 
consistently much worse than any of the methods plotted in in Figure 1. Hence, its 
use imparts a downward bias to the generalizatio~ results. 

A second indication of room for improvement in SULU is the difference in gener­
alization between SULU and a network trained using data in which the unlabeled 
examples provided to SULU have labels (case 5 above). On every dataset , the gain 
from labeling the examples is statistically significant. The accuracy of a network 
trained with all labeled examples is an upper bound for SULU, and one that is likely 
not reachable. However, the distance between the upper bound and SULU'S current 
performance indicate that there is room for improvement. 
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5 CONCLUSIONS 

This paper has presented the SULU algorithm that combines aspects of nearest neigh­
bor classification with neural networks to learn using both labeled and unlabeled 
examples. The algorithm uses the labeled and unlabeled examples to construct 
synthetic examples that capture information about the local characteristics of the 
example space. In so doing, the range of examples seen by the neural network 
during its supervised learning is greatly expanded which results in improved gener­
alization. Results of experiments on six real-work datasets indicate that SULU can 
significantly improve generalization when when there is little labeled data. More­
over, the results indicate that SULU is consistently more effective at using unlabeled 
examples than the EM-algorithm when there is very little labeled data. The results 
suggest that SULU will be effective given the following conditions: 1) there is little 
labeled training data, 2) unlabeled training data is essentially free, 3) the accuracy 
of the classifier when trained with all of the available data is below the level which 
is expected to be achievable. On problems with all of these properties SULU may 
significantly improve the generalization accuracy of inductive classifiers. 
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