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Abstract 

We examine the issue of evaluation of model specific parameters in a 
modified VC-formalism. Two examples are analyzed: the 2-dimensional 
homogeneous perceptron and the I-dimensional higher order neuron. 
Both models are solved theoretically, and their learning curves are com­
pared against true learning curves. It is shown that the formalism has 
the potential to generate a variety of learning curves, including ones 
displaying ''phase transitions ." 

1 Introduction 

One of the main criticisms of the Vapnik-Chervonenkis theory of learning [15] is that the 
results of the theory appear very loose when compared with empirical data. In contrast, 
theory based on statistical physics ideas [1] provides tighter numerical results as well as 
qualitatively distinct predictions (such as "phase transitions" to perfect generalization). 
(See [5, 14] for a fuller discussion.) A question arises as to whether the VC-theory can 
be modified to give these improvements . The general direction of such a modification is 
obvious: one needs to sacrifice the universality of the VC-bounds and introduce model (e.g. 
distribution) dependent parameters. This obviously can be done in a variety of ways. Some 
specific examples are VC-entropy [15], empirical VC-dimensions [16], efficient complexity 
[17] or (p., C)-uniformity [8, 9] in a VC-formalism with error shells. An extension of the 
last formalism is of central interest to this paper. It is based on a refinement of the 
"fundamental theorem of computational learning" [2] and its main innovation is to split the 
set of partitions of a training sample into separate "error shells", each composed of error 
vectors corresponding to the different error values. 

Such a split introduces a whole range of new parameters (the average number of patterns 
in each of a series of error shells) in addition to the VC dimension. The difficulty of 
determining these parameters then arises. There are some crude, "obvious" upper bounds 
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on them which lead to both the VC-based estimates [2, 3, 15] and the statistical physics 
based formalism (with phase transitions) [5] as specific cases of this novel theory. Thus 
there is an obvious potential for improvement of the theory with tighter bounds. In particular 
we find that the introduction of a single parameter (order of uniformity), which in a sense 
determines shifts in relative sizes of error shells, leads to a full family of shapes of learning 
curves continuously ranging in behavior from decay proportional to the inverse of the 
training sample size to "phase transitions" (sudden drops) to perfect generalization in small 
training sample sizes. We present initial comparison of the learning curves from this new 
formalism with "true" learning curves for two simple neral networks. 

2 Overview of the formalism 

The presentation is set in the typical PAC-style; the notation follows [2]. We consider 
a space X of samples with a probability measure J1., a subspace H of binary functions 
X -+ {O, 1} (dichotomies) (called the hypothesis space) and a target hypothesis t E H. 
Foreachh E H andeachm-samplez = (:el, ... , :em) E xm (m E {1, 2, ... }),wedenoteby 

€h,z d;j ~ E::llt-hl(:ei)theempiricalerrorofhonz,andbY€h d;j fx It- h l(:e)J1.(d:e) 
the expected error of h E H. 

For each m E {1, 2, ... } let us consider the random variable 

maa: (-) de! { O} 
€ H :l: = max €h j €h z = 

hEH ' 
(1) 

defined as the maximal expected error of an hypothesis h E H consistent with t on z. The 
learning curve of H, defined as the expected value of tJiaa: , 

€j{(m) d;j Exm.[€Jiaa:] = f €Jiaa: (z)Jr (dz) (z E xm) (2) 
Jx = 

is of central interest to us. Upper bounds on it can be derived from basic PAC-estimates as 
de! 

follows. For € ~ ° we denote by HE = {h E H j €h ~ €} the subset of €-bad hypotheses 
and by 

Q;! d;j {z E Xm j 3hE H. €h,ri = O} = {z E Xm j 3hEH €h,ri = ° & €h ~ €} (3) 

the subset of m-samples for which there exists an €-bad hypothesis consistent with the 
target t. 

Lemmal IfJ1.m(Q;!) ~ 1J!(€,m), then€j{(m) ~ folmin(l,1J!(€,m))J1.(d€), and equality 
in the assumption implies equality in the conclusion. 0 

Proof outline. If the assumption holds, then 'lr(€, m) d~ 1 - min(l, 1J!( €, m)) is a lower 
bound on the cumulative distribution of the random variable (1). Thus E x= [€Jiaa:] ~ 

f01 € tE 'lr( €, m)d€ and integration by parts yields the conclusion. 

o 
Givenz = (:el, ... ,:em) E Xm,letusintroducethetransformation(projection)1rt,ri: H-+ 
{O, l}m allocating to each h E H the vector 

1rt,:i!(h) d;j (Ih(:el) - t(:el)l, ... , Ih(:em) - t(:em)l) 

called the error pattern of h on z. For a subset G C H, let 1rt,:i!(G) = {1rt,:i!(h) : hE G}. 

The space {o,l}m is the disjoint union of error shells £i d~ {(el, ... ,em) E 
{O,l}m j el + ... + em = i} for i = 0,1, ... , m, and l1rt,ri(HE) n £il is the number 
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of different error patterns with i errors which can be obtained for h E HE' We shall emplOy 
the following notation for its average: 

IHEli d~ Ex ... [l1I't,z(HE) n t:in = r l'II't,z(HE) n t:ilJ.£m(dz). (4) Jx ... 

The central result of this paper, which gives a bOlUld on the probability of the set Qr;' as 
in Lemma 1 in terms of I HE Ii, will be given now. It is obtained by modification of the 
proof of [8, Theorem 1] which is a refinement of the proof of the ''ftmdamental theorem of 
computational learning" in [2]. It is a simplified version (to the consistent learning case) of 
the basic estimate discussed in [9, 7]. 

Theorem 2 For any integer Ie ~ 0 and 0 ::; E, 'Y ::; 1 

I-'m(Q';")::; A f ,k,7 t (~) (m:- 1e)-lIHElj+A:, 
j~7k J J 

(5) 

whereAE,k,7 d~ (1- E}~~ O)Ej(l-E)k- j ) -l,forle > OandAE,o,7 d~ 1.0 

Since error shells are disjoint we have the following relation: 

PH(m) d~ 2-m i_I".(H)I!r(dZ) = 2-m t.IHli ~ IIH(m)/2m (6) 

where 1I'z(h) d~ 1I'0,z(h), IHli d~ IHoli and IIH(m) d~ maxz E x'" I 'll'z (H) I is the 
growth function [2] of H. (Note that assuming that the target t == 0 does not affect the 
cardinality of 1I't,z(H).) If the VC-dimension of H, d = dvc(H), is finite, we have the 
well-known estimate [2] 

IIH(m)::; ~(d,m) d~ t (rr:) ::; (em/d)d. 
j=O J 

(7) 

Corollary 3 (i) If the VC-dimension d of H is finite and m > 8/E, then J.£m(Qr;') ::; 
22 - mE/ 2(2em/ d)d. 

(ii) If H has finite cardinality, then J.£m (Qr;') ::; EhEH. (1 - Eh)m. 

Proof. (i) Use the estimate AE,k,E/2 ::; 2 for Ie ~ 8/E resulting from the Chernoff bound 
and set'Y = E /2 and Ie = m in (5). (ii) Substitute the following crude estimate: 

m m 

IHEli ::; L IHEli ::; L IHli ::; PH ::; (em/d)d, 
i=O i=O 

into the previous estimate. (iii) Set Ie = 0 into (i) and use the estimate 

IHli::; L Prx ... (Eh,z = i/m) = L (1- Eh)m-iEhi. 0 

The inequality in Corollary 3.i (ignoring the factor of 2) is the basic estimate of the VC­
formalism (c.f. [2]); the inequality in Corollary 3.ii is the union bound which is the starting 
point for the statistical physics based formalism developed in [5]. In this sense both of 
these theories are unified in estimate (5) and all their conclusions (including the prediction 
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Figure 1: (a) Examples of upper bounds on the learning curves for the case of finite VC­
dimension d = dvc(H) implied by Corollary 4.ii for Cw,m == const. They split into five 
distinct "bands" of four curves each, according to the values of the order of uniformity w = 
2, 3,4,5, 10 (in the top-down order). Each band contains a solid line (Cw,m == 1, d = 100), 
a dotted line (Cw,m == 100, d = 100), a chain line (Cw,m == 1, d = 1000) and a broken line 
(Cw,m == 100, d = 1000). 
(b) Various learning curves for the 2-dimensional homogeneous perceptron. Solid lines 
(top to bottom): (i) - for the VC-theory bound (Corollary 3.ii) with VC-dimension d = 2; 
(ii) - for the bound (for Eqn, 5 and Lemma 1) with'Y = f, k = m and the upper bounds 
IHElr ~ IHlr = 2 for i = 1, " " m - 1 and IHElr ~ IHlr = 1 for i = 0, m ; (iii) - as in 
(ii) but with the exact values for IH Elr as in (11); (iv) - true learning curve (Eqn. 13). The 
w-uniformity bound for w = 2 (with the minimal C w,m satisfying (9), which turn out to be 
= const = 1) is shown by dotted line; for w = 3 the chain line gives the result for minimal 
Cw m and the broken line for Cw m set to 1. , , 

of phase transitions to perfect generalization for the Ising perceptron for a = mj d < 1.448 
in the thermodynamic limit [5]) can be derived from this estimate, and possibly improved 
with the use of tighter estimates on IH E Ir. 
We now formally introduce a family of estimates on IHElr in order to discuss a potential 
of our formalism. For any m, f and w ~ 1.0 there exists Cw,m > 0 such that 

IH.lr s: IHlr s: Cw,m (7) PH(m)l-ll-2i/ml'" (for 0 s: i ~ m), (8) 

We shall call such an estimate an w-uniformity bound. 

Corollary 4 (i) If an w -lllliformity bolllld (8) holds, then 

ILm(Qm) < A C ~ (m)PH (2m)l-ll-j/ml"', r- E _ Elm • .., W,m ~ . , 

j~",m J 
(9) 

(ii) if additionallyd = dvc(H) < 00, then 

m ( ) 
m m m 2m d l-Il-j/ml'" 

J1- (Q.) s: A.,m,,,,Cw,m L . (T (2emjd)) . 0 
j~",m J 

(10) 

3 Examples of learning curves 

In this section we evaluate the above formalism on two examples of simple neural networks. 
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Figure 2: (a) Different learning curves for the higher order neuron (analogous to Fig. l.b). 
Solid lines (top to bottom)( i) - forthe VC-theory bound (Corollary 3.ii) with VC-dimension 
d + 1 = 21; (ii) - for the bound (5) with 'Y = € and the upper bounds I H E Ii ~ I H Ii with 
IHli given by (15); (iii) - true learning curve (the upper bound given by (18)). The w­
uniformity bound/approximation are plotted as chain and dotted lines for the minimal C w,m 
satisfying (8), and as broken (long broken) line for C w,m = const = 1 with w = 2 (w = 3). 
(b) Plots of the minimal value of Cw,m satisfying condition of w-uniformity bound (8) for 
higher order neuron and selected values of w. 

3.1 2-dimensional homogeneous perceptron 

We consider X d.~ R2 and H defined as the family of all functions (el, 6) ~ 8(el Wl + 
6W2)' where (Wl, W2) E R2 and 8(r) is defined as 1 if r ~ 0 and 0, otherwise, and the 
probability measure jJ. on R2 has rotational symmetry with respect to the origin. Fix an 
arbitrary target t E H . In such a case 

IH I~= 1 { 
2(1 - €)m - (1 - 2€)m 

E, . () 22:;=0 j €i (1- €)m-; 

(for i = 0 and 0 ~ € ~ 1/2), 
(fori = m), 

( otherwise). 

In particular we find that IHli = 1 for i = 0, m and IHli = 2, otherwise, and 
m 

(11) 

PH(m) = L IHli /2m = (1 + 2 + ... + 2 + 1)/2m = m/2m - l . (12) 

and the true learning curve is 

€j{ (m) = 1.5(m + 1)-1. (13) 

The latter expression results from Lemma 1 and the equality 

m(Qm) _ { 2(1 - €)m - (1 - 2€)m (for 0 ~ € ~ 1/2), 
jJ. f - 2(1 - €)m (for 1/2 < € ~ 1), (14) 

Different learning curves (bounds and approximations) for homogeneous perceptron are 
plotted in Figure 1.b. 

3.2 I-dimensional higher order neuron 

We consider X d.~ [0,1] c R with a continuous probability distribution jJ., Define the 
hypothesis space H C {O, l}X as the set of all functions of the form 8op(z) where p is a 
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polynomial of degree :::; d on R. Let the target be constant, t == 1. It is easy to see that H 
restricted to a finite subset of [0,1] is exactly the restriction of the family of all fimctions 
iI c {O, 1 }[O,lj with up to d "jumps" from a to lor 1 toO and thus dvc(H) = d+ 1. With 
probability 1 an m-sample Z = (Zl' "" zm) from xm is such that Zi #- Zj for i #- j. For 
such a generic Z, l7rt,z(H) n t:il = const = IHli. This observation was used to derive 
the following relations for the computation of I H Ii: 

min(d,m-l) 
IHli = L liI(6)li + liI(6)1:_i, (15) 

6=0 

for ° :::; i :::; m, where liI(6)li, for 0 = 0,1, ... ,d, is defined as follows . We initialize 

liI(O)lo = liI(l)li d~ 1 fori = 1, .. " m-1, liI(1) 10 = liI(l)l~ d~ ° and liI(6)li d~ ° 
for i = 0, 1, ... , m, 0 = 2,3, .. " d, and then, recurrently, for 0 ~ 2 we set liI(6) Ii d~ 
~m-l . liI(6-l)l~ if 0 is odd and liI(6)1~ d~ ~m-l liI(6-l)l~ ifo is even 
L.Jk=max(6,m-~) ~-m+k ~ L.Jk=6 ~ . 

(Here liI(6)li is defined by the relation (4) with the target t == 1 for the hypothesis space 
H(6) C iI composed of functions having the value 1 near a and exactly 0 jumps in (0,1), 
exactly at entries of z; similarly as for H, IH(6)li = l7rl,zH(6) n t:il for a generic 
m-sample z E (0, l)m.) 

Analyzing an embedding of R into Rd, and using an argument based on the Vandermonde 
determinant as in [6,13], itcan be proved that the partition function IIH is given by Cover's 
counting function [4], and that 

(16) 

For the uniform distribution on [0, 1] and a generic z E [0, l]m letAk(z) denote the sum of 
Ie largest segments of the partition of [0, 1] into m + 1 segments by the entries of Z. Then 

Ald/:lJ(Z):::; e'J;arz:(z):::; Ald/:lJ+l(Z), (17) 

An explicit expression for the expected value of Ak is known [11], thus a very tight bound 
on the true learning curve eH (m) defined by (2) can be obtained: 

~/2J1 (1 + E ~):::; eH(m):::; Ld~2J : 1 (1 + E ~), (18) 
+ i=ld/:lJ+1 J + i=ld/:lJ+:l J 

Numerical results are shown in Figure 2. 

4 Discussion and conclusions 

The basic estimate (5) of Theorem 1 has been used to produce upper bounds on the learning 
curve (via Lemma 1) in three different ways: (i) using the exact values of coefficients 
IHEli (Fig. 1a), (ii) using the estimate IHEli :::; IHli and the values of IHli and (iii) 
using the w-uniformity bound (8) with minimal value of Cw,m and as an "apprOximation" 
with Cw,m = const = 1. Both examples of simple learning tasks considered in the paper 
allowed us to compare these results with the true learning curves (or their tight bounds) 
which can serve as benchmarks. 

Figure 1.a implies that values of parameter w in the w-uniformity bound (approximation) 
governing a distribution of error patterns between different error shells (c.f, [10)) has a 
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significant impact on learning curve shapes, changing from slow decrease to rapid jumps 
(''phase transitions',) in generalization. 

Figure l.b proves that one loses tightness of the bound by using I HI i rather than I HE Ii , and 
even more is lost if w-unifonnity bounds (with variable C W,17l) are employed. Inspecting 
Figures l.b and 2.a we find that approximate approaches consisting of replacing IHElr 
by a simple estimate (w-uniforrnity) can produce learning curves very close to IHli­
learning curves suggesting that an application of this formalism to learning systems where 
neither IHElr nor IHlr can by calculated might be possible. This could lead to a sensible 
approximate theory capturing at least certain qualitative properties of learning curves for 
more complex learning tasks. 

Generally, the results of this paper show that by incorporating the limited knowledge of the 
statistical distribution of error patterns in the sample space one can dramatically improve 
bounds on the learning curve with respect to the classical universal estimates of the VC­
theory. This is particularly important for "practical" training sample sizes (m ~ 12 x 
VC-dimension) where the VC-bounds are void. 
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