
Universal Approximation and Learning 
of Trajectories Using Oscillators 

Pierre Baldi* 
Division of Biology 

California Institute of Technology 
Pasadena, CA 91125 

pfbaldi@juliet.caltech.edu 

Kurt Hornik 
Technische Universitat Wien 

Wiedner Hauptstra8e 8-10/1071 
A-1040 Wien, Austria 

Kurt.Hornik@tuwien.ac.at 

Abstract 

Natural and artificial neural circuits must be capable of travers­
ing specific state space trajectories. A natural approach to this 
problem is to learn the relevant trajectories from examples. Un­
fortunately, gradient descent learning of complex trajectories in 
amorphous networks is unsuccessful. We suggest a possible ap­
proach where trajectories are realized by combining simple oscil­
lators, in various modular ways. We contrast two regimes of fast 
and slow oscillations. In all cases, we show that banks of oscillators 
with bounded frequencies have universal approximation properties. 
Open questions are also discussed briefly. 

1 INTRODUCTION: TRAJECTORY LEARNING 

The design of artificial neural systems, in robotics applications and others, often 
leads to the problem of constructing a recurrent neural network capable of producing 
a particular trajectory, in the state space of its visible units. Throughout evolution, 
biological neural systems, such as central pattern generators, have also been faced 
with similar challenges. A natural approach to tackle this problem is to try to 
"learn" the desired trajectory, for instance through a process of trial and error 
and subsequent optimization. Unfortunately, gradient descent learning of complex 
trajectories in amorphous networks is unsuccessful. Here, we suggest a possible 
approach where trajectories are realized, in a modular and hierarchical fashion, by 
combining simple oscillators. In particular, we show that banks of oscillators have 
universal approximation properties. 

* Also with the Jet Propulsion Laboratory, California Institute of Technology. 
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To begin with, we can restrict ourselves to the simple case of a network with one! 
visible linear unit and consider the problem of adjusting the network parameters 
in a way that the output unit activity u(t) is equal to a target function I(t), over 
an interval of time [0, T]. The hidden units of the network may be non-linear and 
satisfy, for instance, one of the usual neural network charging equations such as 

dUi Ui ~ 
dt = - Ti + L..JjWij/jUj(t - Tij), (1) 

where Ti is the time constant of the unit, the Tij represent interaction delays, and 
the functions Ij are non-linear input/output functions, sigmoidal or other. In the 
next section, we briefly review three possible approaches for solving this problem, 
and some of their limitations. In particular, we suggest that complex trajectories 
can be synthesized by proper combination of simple oscillatory components. 

2 THREE DIFFERENT APPROACHES TO TRAJECTO­
RY LEARNING 

2.1 GRADIENT DESCENT APPROACHES 

One obvious approach is to use a form of gradient descent for recurrent networks 
(see [2] for a review), such as back-propagation through time, in order to mod­
ify any adjustable parameters of the networks (time constants, delays, synaptic 
weights and/or gains) to reduce a certain error measure, constructed by comparing 
the output u(t) with its target I(t). While conceptually simple, gradient descent 
applied to amorphous networks is not a successful approach, except on the most 
simple trajectories. Although intuitively clear, the exact reasons for this are not 
entirely understood, and overlap in part with the problems that can be encountered 
with gradient descent in simple feed-forward networks on regression or classification 
tasks. 

There is an additional set of difficulties with gradient descent learning offixed points 
or trajectories, that is specific to recurrent networks, and that has to do with the 
bifurcations of the system being considered. In the case of a recurrent2 network, as 
the parameters are varied, the system mayor may not undergo a series of bifurca­
tions, i.e., of abrupt changes in the structure of its trajectories and, in particular, of 
its at tractors (fixed points, limit cycles, ... ). This in turn may translate into abrupt 
discontinuities, oscillations or non-convergence in the corresponding learning curve. 
At each bifurcation, the error function is usually discontinuous, and therefore the 
gradient is not defined. Learning can be disrupted in two ways: when unwanted 
abrupt changes occur in the flow of the dynamical system, or when desirable bifur­
cations are prevented from occurring. A classical example of the second type is the 
case of a neural network with very small initial weights being trained to oscillate, 
in a symmetric and stable fashion, around the origin. With small initial weights, 
the network in general converges to its unique fixed point at the origin, with a large 
error. If we slightly perturb the weights, remaining away from any bifurcation, the 
network continues to converge to its unique fixed point which now may be slightly 
displaced from the origin, and yield an even greater error, so that learning by gradi­
ent descent becomes impossible (the starting configuration of zero weights is a local 
minimum of the error function). 

1 All the results to be derived can be extended immediately to the case of higher­
dimensional trajectories. 

2In a feed-forward network, where the transfer functions of the units are continuous, the 
output is a continuous function of the parameters and therefore there are no bifurcations. 
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Figure 1: A schematic representation of a 3 layer oscillator network for double figure 
eight. Oscillators with period T in a given layer gate the corresponding oscillators, 
with period T /2, in the previous layer. 

2.2 DYNAMICAL SYSTEM APPROACH 

In the dynamical system approach, the function /(t) is approximated in time, over 
[0, T] by a sequence of points Yo, Yl, .... These points are associated with the iterates 
of a dynamical system, i.e., Yn+l = F(Yn) = Fn(yo), for some function F. Thus 
the network implementation requires mainly a feed-forward circuit that computes 
the function F. It has a simple overall recursive structure where, at time n, the 
output F(Yn) is calculated, and fed back into the input for the next iteration. 
While this approach is entirely general, it leaves open the problem of constructing 
the function F. Of course, F can be learned from examples in a usual feed-forward 
connectionist network. But, as usual, the complexity and architecture of such a 
network are difficult to determine in general. Another interesting issue in trajectory 
learning is how time is represented in the network, and whether some sort of clock is 
needed. Although occasionally in the literature certain authors have advocated the 
introduction of an input unit whose output is the time t, this explicit representation 
is clearly not a suitable representation, since the problem of trajectory learning 
reduces then entirely to a regression problem. The dynamical system approach 
relies on one basic clock to calculate F and recycle it to the input layer. In the 
next approach, an implicit representation of time is provided by the periods of the 
oscillators. 

2.3 OSCILLATOR APPROACH 

A different approach was suggested in [1] where, loosely speaking, complex tra­
jectories are realized using weakly pre-structured networks, consisting of shallow 
hierarchical combinations of simple oscillatory modules. The oscillatory modules 
can consist, for instance, of simple oscillator rings of units satisfying Eq. 1, with 
two or three high-gain neurons, and an odd number of inhibitory connections ([3]). 

To fix the ideas, consider the typical test problem of constructing a network capable 
of producing a trajectory associated with a double figure eight curve (i.e., a set 
of four loops joined at one point), see Fig. 1. In this example, the first level of 
the hierarchy could contain four oscillator rings, one for each loop of the target 
trajectory. The parameters in each one of these four modules can be adjusted, for 
instance by gradient descent, to match each of the loops in the target trajectory. 
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The second level of the pyramid should contain two control modules. Each of these 
modules controls a distinct pair of oscillator networks from the first level, so that 
each control network in the second level ends up producing a simple figure eight . 
Again, the control networks in level two can be oscillator rings and their parameters 
can be adjusted. In particular, after the learning process is completed, they should 
be operating in their high-gain regimes and have a period equal to the sum of the 
periods of the circuits each one controls. 

Finally, the third layer consists of another oscillatory and adjustable module which 
controls the two modules in the second level, so as to produce a double figure 
eight . The third layer module must also end up operating in its high-gain regime 
with a period equal to four times the period of the oscillators in the first layer. 
In general, the final output trajectory is also a limit cycle because it is obtained 
by superposition of limit cycles in the various modules. If the various oscillators 
relax to their limit cycles independently of one another, it is essential to provide 
for adjustable delays between the various modules in order to get the proper phase 
adjustments. In this way, a sparse network with 20 units or so can be constructed 
that can successfully execute a double figure eight. 

There are actually different possible neural network realizations depending on how 
the action of the control modules is implemented. For instance, if the control units 
are gating the connections between corresponding layers, this amounts to using 
higher order units in the network. If one high-gain oscillatory unit, with activity 
c(t) always close to 0 or 1, gates the oscillatory activities of two units Ul(t) and 
U2(t) in the previous layer, then the overall output can be written as 

out(t) = C(t)Ul (t) + (1 - C(t))U2(t) . (2) 

The number of layers in the network then becomes a function of the order of the 
units one is willing to use. This approach could also be described in terms of a 
dynamic mixture of experts architecture, in its high gain regime. Alternatively, 
one could assume the existence of a fast weight dynamics on certain connections 
governed by a corresponding set of differential equations. Although we believe that 
oscillators with limit cycles present several attractive properties (stability, short 
transients, biological relevance, . . . ), one can conceivably use completely different 
circuits as building blocks in each module. 

3 GENERALIZATION AND UNIVERSAL APPROXIMA­
TION 

We have just described an approach that combines a modular hierarchical architec­
ture, together with some simple form of learning, enabling the synthesis of a neural 
circuit suitable for the production of a double figure eight trajectory. It is clear that 
the same approach can be extended to triple figure eight or, for that matter, to any 
trajectory curve consisting of an arbitrary number of simple loops with a common 
period and one common point . In fact it can be extended to any arbitrary trajec­
tory. To see this, we can subdivide the time interval [0, T] into n equal intervals of 
duration f = Tin . Given a certain level of required precision, we can always find n 
oscillator networks with period T (or a fraction of T) and visible trajectory Ui(t), 
such that for each i, the i-th portion of the trajectory u(t) with if ~ t ~ (i + l)f 
can be well approximated by a portion of Ui(t) , the trajectory of the i-th oscillator. 
The target trajectory can then be approximated as 

(3) 
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As usual, the control coefficient Cj(t) must have also period T and be equal to 1 
for i{ :5 t :5 (i + 1){, and 0 otherwise. The control can be realized with one large 
high-gain oscillator, or as in the case described above, by a hierarchy of control 
oscillators arranged, for instance, as a binary tree of depth m if n = 2m , with the 
corresponding multiple frequencies. 

We can now turn to a slightly different oscillator approach, where trajectories are to 
be approximated with linear combinations of oscillators, with constant coefficients. 
What we would like to show again is that oscillators are universal approximators 
for trajectories. In a sense, this is already a well-known result of Fourier theory 
since, for instance, any reasonable function f with period T can be expanded in the 
form3 

A.k = kiT. (4) 

For sufficiently smooth target functions, without high frequencies in their spectrum, 
it is well known that the series in Eq. 4 can be truncated. Notice, however, that both 
Eqs. 3 and 4 require having component oscillators with relatively high frequencies, 
compared to the final trajectory. This is not implausible in biological motor control, 
where trajectories have typical time scales of a fraction of a second, and single 
control neurons operate in the millisecond range. A rather different situation arises 
if the component oscillators are "slow" with respect to the final product. 

The Fourier representation requires in principle oscillations with arbitrarily large 
frequencies (0, liT, 2IT, .. . , niT, .. . ). Most likely, relatively small variations in the 
parameters (for instance gains, delays andlor synaptic weights) of an oscillator 
circuit can only lead to relatively small but continuous variations of the overall 
frequency. For instance, in [3] it is shown that the period T of an oscillator ring 
with n units obeying Eq. 1 must satisfy 

Thus, we need to show that a decomposition similar in flavor to Eq. 4 is possible, 
but using oscillators with frequencies in a bounded interval. Notice that by varying 
the parameters of a basic oscillator, any frequency in the allowable frequency range 
can be realized, see [3]. Such a linear combination is slightly different in spirit from 
Eq. 2, since the coefficients are independent of time, and can be seen as a soft 
mixture of experts. We have the following result. 

Theorem 1 Let a < b be two arbitrary real numbers and let f be a continuous 
function on [0, T]. Then for any error level { > 0, there exist n and a function 9n 
of the form 

such that the uniform distance Ilf - 9n 1100 is less than {. 

In fact, it is not even necessary to vary the frequencies A. over a continuous band 
[a, b]. We have the following. 

Theorem 2 Let {A.k} be an infinite sequence with a finite accumulation point, and 
let f be a continuous function on [0,7]. Then for any error level { > 0, there exist 
n and a function 9n(t) = 2:~=10:'ke27rjAkt such that Ilf - 9nll00 < {. 

3In what follows, we use the complex form for notational convenience. 
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Thus, we may even fix the oscillator frequencies as e.g. Ak = l/k without losing 
universal approximation capabilities. Similar statements can be made about mean­
square approximation or, more generally, approximation in p-norm LP(Il), where 
1 ~ p < 00 and Il is a finite measure on [0, T]: 

Theorem 3 For all p and f in LP(Il) and for all { > 0, we can always find nand 
gn as above such that Ilf - gn IILP{Jl) < {. 

The proof of these results is surprisingly simple. Following the proofs in [4], if one 
of the above statements was not true, there would exist a nonzero, signed finite 
measure (T with support in [0, T] such that hO,T] e21fi >.t d(T(t) = ° for all "allowed" 

frequencies A. Now the function z t-+ !rO,T] e21fizt d(T(t) is clearly analytic on the 
whole complex plane. Hence, by a well-known result from complex variables, if it 
vanishes along an infinite sequence with a finite accumulation point, it is identically 
zero. But then in particular the Fourier transform of (T vanishes, which in turn 
implies that (T is identically zero by the uniqueness theorem on Fourier transforms, 
contradicting the initial assumption. 

Notice that the above results do not imply that f can exactly be represented as 
e.g. f(t) = f: e21fi >.t dV(A) for some signed finite measure v-such functions are not 
only band-limited, but also extremely smooth (they have an analytic extension to 
the whole complex plane). 

Hence, one might even conjecture that the above approximations are rather poor 
in the sense that unrealistically many terms are needed for the approximation. 
However, this is not true-one can easily show that the rates of approximation 
cannot be worse that those for approximation with polynomials. Let us briefly sketch 
the argument, because it also shows how bounded-frequency oscillators could be 
constructed. 

Following an idea essentially due to Stinchcombe & White [5], let, more generally, 
9 be an analytic function in a neighborhood of the real line for which no derivative 
vanishes at the origin (above, we had g(t) = e21fit ). Pick a nonnegative integer n 
and a polynomial p of degree not greater than n - 1 arbitrarily. Let us show that 
for any { > 0, we can always find a gn of the form gn(t) = E~=l Cl'kg(Akt) with Ak 
arbitrarily small such that lip - gn 1100 < {. To do so, note that we can write 

L n - l 
p(t) = is,t' , 1=0 

where rn(At) is of the order of An, as A -t 0, uniformly for t in [0, T] . Hence, 

L:=l Cl'kg(Ak t ) L:=l Cl'k (L~=-ol fil (At)l + rn (At)) 

= L~=~l (L:: 1 Cl'kAi) filt l + L:=l Cl'krn (Akt). 

Now fix n distinct numbers el, ... ,en, let Ak = Ak(p) = pek, and choose the Cl'k = 
Cl'k(p) such that E;=lCl'k(p)Ak(p)' = iSl/fil for I = 0, ... , n - 1. (This is possible 
because, by assumption, all fil are non-zero.) It is readily seen that Cl'k (p) is of 
the order of pl-n as p -t ° (in fact, the j-th row of the inverse of the coefficient 
matrix of the linear system is given by the coefficients of the polynomial nktj (A -

Ak)/(Aj -Ak)). Hence, as p -t 0, the remainder term EZ=lCl'k(p)rn(Ak(p)t) is ofthe 

order of p, and thus E~=lCl'k(p)g(Adp)t) -t E~=-oliS,t' = p(t) uniformly on [0, T]. 

Note that using the above method, the coefficients in the approximation grow quite 
rapidly when the approximation error tends to 0. In some sense, this was to be 
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expected from the observation that the classes of small-band-limited functions are 
rather "small". There is a fundamental tradeoff between the size of the frequencies, 
and the size of the mixing coefficients. How exactly the coefficients scale with the 
width of the allowed frequency band is currently being investigated. 

4 CONCLUSION 

The modular oscillator approach leads to trajectory architectures which are more 
structured than fully interconnected networks, with a general feed-forward flow of 
information and sparse recurrent connections to achieve dynamical effects. The 
sparsity of units and connections are attractive features for hardware design; and 
so is also the modular organization and the fact that learning is much more cir­
cumscribed than in fully interconnected systems. We have shown in different ways 
that such architectures have universal approximation properties. In these architec­
tures, however, some form of learning remains essential, for instance to fine tune 
each one of the modules. This, in itself, is a much easier task than the one a fully 
interconnected and random network would have been faced with. It can be solved 
by gradient or random descent or other methods. Yet, fundamental open problems 
remain in the overall organization of learning across modules, and in the origin of 
the decomposition. In particular, can the modular architecture be the outcome of a 
simple internal organizational process rather than an external imposition and how 
should learning be coordinated in time and across modules (other than the obvious: 
modules in the first level learn first, modules in the second level second, .. . )? How 
successful is a global gradient descent strategy applied across modules? How can the 
same modular architecture be used for different trajectories, with short switching 
times between trajectories and proper phases along each trajectory? 
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