
Memory-based Stochastic Optimization 

Andrew W. Moore and Jeff Schneider 
School of Computer Science 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

Abstract 
In this paper we introduce new algorithms for optimizing noisy 
plants in which each experiment is very expensive. The algorithms 
build a global non-linear model of the expected output at the same 
time as using Bayesian linear regression analysis of locally weighted 
polynomial models. The local model answers queries about confi­
dence, noise, gradient and Hessians, and use them to make auto­
mated decisions similar to those made by a practitioner of Response 
Surface Methodology. The global and local models are combined 
naturally as a locally weighted regression . We examine the ques­
tion of whether the global model can really help optimization, and 
we extend it to the case of time-varying functions. We compare 
the new algorithms with a highly tuned higher-order stochastic op­
timization algorithm on randomly-generated functions and a sim­
ulated manufacturing task. We note significant improvements in 
total regret , time to converge, and final solution quality. 

1 INTRODUCTION 
In a stochastic optimization problem, noisy samples are taken from a plant. A 
sample consists of a chosen control u (a vector ofreal numbers) and a noisy observed 
response y. y is drawn from a distribution with mean and variance that depend on 
u. y is assumed to be independent of previous experiments. Informally t he goal is 
to quickly find control u to maximize the expected output E[y I u) . This is different 
from conventional numerical optimization because the samples can be very noisy, 
there is no gradient information , and we usually wish to avoid ever performing badly 
(relative to our start state) even during optimization. Finally and importantly: 
each experiment is very expensive and there is ample computational time 
(often many minutes) for deciding on the next experiment. The following questions 
are both interesting and important: how should this computational time best be 
used, and how can the data best be used? 

Stochastic optimization is of real industrial importance, and indeed one of our 
reasons for investigating it is an association with a U.S . manufacturing company 
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that has many new examples of stochastic optimization problems every year. 

The discrete version of this problem, in which u is chosen from a discrete set, 
is the well known k-armed bandit problem. Reinforcement learning researchers 
have recently applied bandit-like algorithms to efficiently optimize several dis­
crete problems [Kaelbling, 1990, Greiner and Jurisica, 1992, Gratch et al., 1993, 
Maron and Moore, 1993]. This paper considers extensions to the continuous case 
in which u is a vector of reals. We anticipate useful applications here too. Conti­
nuity implies a formidable number of arms (uncountably infinite) but permits us to 
assume smoothness of E[y I u] as a function of u. 

The most popular current techniques are: 

• Response Surface Methods (RSM). Current RSM practice is described in 
the classic reference [Box and Draper, 1987]. Optimization proceeds by cautious 
steepest ascent hill-climbing. A region of interest (ROI) is established at a start­
ing point and experiments are made at positions within the region that can best 
be used to identify the function properties with low-order polynomial regression. 
A large portion of the RSM literature concerns experimental design-the decision 
of where to take data points in order to acquire the lowest variance estimate of 
the local polynomial coefficients in a fixed number of experiments. When the 
gradient is estimated with sufficient confidence, the ROI is moved accordingly. 
Regression of a quadratic locates optima within the ROI and also diagnoses ridge 
systems and saddle points. 

The strength of RSM is that it is careful not to change operating conditions based 
on inadequate evidence, but moves once the data justifies. A weakness of RSM 
is that human judgment is needed: it is not an algorithm, but a manufacturing 
methodology . 

• Stochastic Approximation methods. The algorithm of [Robbins and Monro, 
1951] does root finding without the use of derivative estimates. Through the use of 
successively smaller steps convergence is proven under broad assumptions about 
noise. Keifer-Wolfowitz (KW) [Kushner and Clark, 1978] is a related algorithm 
for optimization problems. From an initial point it estimates the gradient by 
performing an experiment in each direction along each dimension of the input 
space. Based on the estimate, it moves its experiment center and repeats. Again, 
use of decreasing step sizes leads to a proof of convergence to a local optimum. 

The strength of KW is its aggressive exploration, its simplicity, and that it comes 
with convergence guarantees. However, it has more of a danger of attempting 
wild experiments in the presence of noise, and effectively discards the data it 
collects after each gradient estimate is made. In practice, higher order versions 
of KW are available in which convergence is accelerated by replacing the fixed 
step size schedule with an adaptive one [Kushner and Clark, 1978]. Later we 
compare the performance of our algorithms to such a higher-order KW. 

2 MEMORY-BASED OPTIMIZATION 
Neither KW nor RSM uses old data. After a gradient has been identified the control 
u is moved up the gradient and the data that produced the gradient estimate is 
discarded. Does this lead to inefficiencies in operation? This paper investigates one 
way of using old data: build a global non-linear plant model with it. 

We use locally weighted regression to model the system [Cleveland and Delvin, 1988, 
Atkeson, 1989, Moore, 1992]. We have adapted the methods to return posterior 
distributions for their coefficients and noise (and thus, indirectly, their predictions) 
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based on very broad priors, following the Bayesian methods for global linear regres­
sion described in [DeGroot, 1970]. 

We estimate the coefficients f3 = {,8I ... ,8m} of a local polynomial model in which 
the data was generated by the polynomial and corrupted with gaussian noise of 
variance u2, which we also estimate. Our prior assumption will be that f3 is dis­
tributed according to a multivariate gaussian of mean 0 and covariance matrix E. 
Our prior on u is that 1/u2 has a gamma distribution with parameters a and ,8. 

Assume we have observed n pieces of data. The jth polynomial term for the ith 
data point is Xij and the output response of the ith data point is Ii. Assume 
further that we wish to estimate the model local to the query point X q , in which a 
data point at distance di from the the query point has weight Wi = exp( -dl! K). 
K, the kernel width is a fixed parameter that determines the degree of localness in 
the local regression. Let W = Diag(wl,w2 . .. Wn) . 

The marginal posterior distribution of f3 is' a t distribution with mean 13 = (E- 1 + 
X T W 2X)-1(XT W 2y) covariance 

(2,8 + (yT - f3T XT)W2yT)(E-l + X TW 2 X)-l / (2a + I:~=l wi) (1) 

and a + I:~=l w'f degrees of freedom. 

We assume a wide, weak, prior E = Diag(202,202, ... 202), a = 0.8,,8 = 0.001, 
meaning the prior assumes each regression coefficient independently lies with high 
probability in the range -20 to 20, and the noise lies in the range 0.01 to 0.5. 

Briefly, we note the following reasons that Bayesian locally weighted polynomial 
regression is particularly suited to this application: 

• We can directly obtain meaningful confidence estimates of the joint pdf of the 
regressed coefficients and predictions. Indirectly, we can compute the probability 
distribution of the steepest gradient, the location of local optima and the principal 
components of the local Hessian. 

• The Bayesian approach allows meaningful regressions even with fewer data points 
than regression coefficients-the posterior distribution reveals enormous lack of 
confidence in some aspects of such a model but other useful aspects can still be 
predicted with confidence. This is crucial in high dimensions, where it may be 
more effective to head in a known positive gradient without waiting for all the 
experiments that would be needed for a precise estimate of steepest gradient. 

• Other pros and cons of locally weighted regression in the context of control can 
be found in [Moore et ai., 1995]. 

Given the ability to derive a plant model from data, how should it best be used? 
The true optimal answer, which requires solving an infinite-dimensional Markov 
decision process, is intractable. We have developed four approximate algorithms 
that use the learned model , described briefly below. 

• AutoRSM. Fully automates the (normally manual) RSM procedure and incor­
porates weighted data from the model; not only from the current design. It uses 
online experimental design to pick ROI design points to maximize information 
about local gradients and optima. Space does not permit description of the linear 
algebraic formulations of these questions. 

• PMAX. This is a greedy, simpler approach that uses the global non-linear model 
from the data to jump immediately to the model optimum. This is similar to the 
technique described in [Botros, 1994], with two extensions. First, the Bayesian 
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Figure 1: Three examples 
of 2-d functions used in op­
timization experiments 

priors enable useful decisions before the regression becomes full-rank. Second, 
local quadratic models permit second-order convergence near an optimum. 

• IEMAX. Applies Kaelbling's IE algorithm [Kaelbling, 1990] in the continuous 
case using Bayesian confidence intervals. 

argmax; () 
llchosen = u J opt U (2) 

where iopt(u) is the top of the 95th %-ile confidence interval. The intuition here 
is that we are encouraged to explore more aggressively than PMAX, but will not 
explore areas that are confidently below the best known optimum . 

• COMAX. In a real plant we would never want to apply PMAX or IEMAX. Ex­
periments must be cautious for reasons of safety, quality control, and managerial 
peace of mind. COMAX extends IEMAX thus: 

argmax A A . 

llchosen = fopt(u);U E SAFE{=} f,pess(U) > dIsaster threshold (3) 
u E SAFE 

Analysis of these algorithms is problematic unless we are prepared to make strong 
assumptions about the form of E[Y I u]. To examine the general case we rely on 
Monte Carlo simulations, which we now describe. 

The experiments used randomly generated nonlinear unimodal (but not necessarily 
convex) d-dimensional functions from [0, l]d -+ [0,1]. Figure 1 shows three example 
2-d functions. Gaussian noise (0- = 0.1) is added to the functions. This is large 
noise, and means several function evaluations would be needed to achieve a reliable 
gradient estimate for a system using even a large step size such as 0.2. 

The following optimization algorithms were tested on a sample of such functions. 

Vary-KW The best performing KW algorithm we could find varied step size and 
adapted gradient estimation steps to avoid undue regret at optima. 

Fixed-KW A version of KW that keeps its gradient-detecting step size fixed. 
This risks causing extra regret at a true optima, but has less chance 
of becoming delayed by a non-optimum. 

Auto-RSM The best performing version thereof. 
Passlve-RSM Auto-RSM continues to identify the precise location of the optimum 

when it's arrived at that optimum. When Passive-RSM is confident 
(greater than 99%) that it knows the location of the optimum to two 
significant places, it stops experimenting. 

Linear RSM A linear instead of quadratic model, thus restricted to steepest ascent. 
CRSM Auto-RSM with conservative parameters, more typical of those rec-

ommended in the RSM literature. 
Pmax, IEmax As described above. 
and Comax 

Figures 2a and 2b show the first sixty experiments taken by AutoRSM and KW 
respectively on their journeys to the goal. 
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Figure 2a: The path taken (start at 
(0.8,0.2)) by AutoRSM optimizing the 
given function with added noise of stan­
dard deviation 0.1 at each experiment. 

Figure 2b: The path taken (start at 
(0.8,0.2)) by KW. KW's path looks decep­
tively bad, but remember it is continually 
buffeted by considerable noise. 
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Figure 3: Comparing nine stochastic optimization algorithms by four criteria: (a) Regret, 
(b) Disasters, (c) Speed to converge (d) Quality at convergence. The partial order depicted 
shows which results are significant at the 99% level (using blocked pairwise comparisons). 
The outputs of the random functions range between 0-1 over the input domain. The 
numbers in the boxes are means over fifty 5-d functions. (a) Regret is defined as the mean 
Yopt - Yi-the cost incurred during the optimization compared with performance if we 
had known the optimum location and used it from the beginning. With the exception of 
IEMAX, model-based methods perform significantly better than KW, with reduced ad­
vantage for cautious and linear methods. (b) The %-age of steps which tried experiments 
with more than 0.1 units worse performance than at the search start. This matters to a 
risk averse manager. AutoRSM has fewer than 1% disasters, but COMAX and the model­
free methods do better still. PMAX's aggressive exploration costs it. (c) The number of 
steps until we reach within 0.05 units of optimal. PMAX 's aggressiveness wins. (d) The 
quality of the "final" solution between steps 50 and 60 of the optimization. 

Results for 50 trials of each optimization algorithms for five-dimensional randomly 
generated functions are depicted in Figure 3. Many other experiments were per­
formed in other dimensionalities and for modified versions of the algorithm, but 
space does not permit detailed discussion here. 

Finally we performed experiments with the simulated power-plant process in Fig­
ure 4. The catalyst controller adjusts the flow rate of the catalyst to achieve the 
goal chemical A content. Its actions also affect chemical B content. The tem­
perature controller adjusts the reaction chamber temperature to achieve the goal 
chemical B content. The chemical contents are also affected by the flow rate which 
is determined externally by demand for the product. 

The task is to find the optimal values for the six controller parameters that min­
imize the total squared deviation from desired values of chemical A and chemical 
B contents. The feedback loops from sensors to controllers have significant delay. 
The controller gains on product demand are feedforward terms since there is sig­
nificant delay in the effects of demand on the process. Finally, the performance of 
the system may also depend on variations over time in the composition of the input 
chemicals which can not be directly sensed. 






