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Abstract 

This paper discusses how a robot can learn goal-directed naviga­
tion tasks using local sensory inputs. The emphasis is that such 
learning tasks could be formulated as an embedding problem of 
dynamical systems: desired trajectories in a task space should be 
embedded into an adequate sensory-based internal state space so 
that an unique mapping from the internal state space to the motor 
command could be established. The paper shows that a recurrent 
neural network suffices in self-organizing such an adequate internal 
state space from the temporal sensory input. In our experiments, 
using a real robot with a laser range sensor, the robot navigated 
robustly by achieving dynamical coherence with the environment. 
It was also shown that such coherence becomes structurally sta­
ble as the global attractor is self-organized in the coupling of the 
internal and the environmental dynamics. 

1 Introd uction 

Conventionally, robot navigation problems have been formulated assuming a global 
view of the world. Given a detailed map of the workspace, described in a global 
coordinate system, the robot navigates to the specified goal by following this map. 
However, in situations where robots have to acquire navigational knowledge based 
on their own behaviors, it is important to describe the problems from the internal 
views of the robots. 

[Kuipers 87], [Mataric 92] and others have developed an approach based on land­
mark detection. The robot acquires a graph representation of landmark types as a 
topological modeling of the environment through its exploratory travels using the 
local sensory inputs. In navigation, the robot can identify its topological position 
by anticipating the landmark types in the graph representation obtained. It is, 
however, considered that this navigation strategy might be susceptible to erroneous 
landmark-matching. If the robot is once lost by such a catastrophe, its recoverance 
of the positioning might be difficult. We need certain mechanisms by which the 
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robot can recover autonomously from such failures. 

We study the above problems by using the dynamical systems approach, expecting 
that this approach would provide an effective representational and computational 
framework. The approach focuses on the fundamental dynamical structure that 
arises from coupling the internal and the environmental dynamics [Beer 95]. Here, 
the objective of learning is to adapt the internal dynamical function such that the 
resultant dynamical structure might generate the desired system behavior. The sys­
tem's performance becomes structurally stable if the dynamical structure maintains 
a sufficiently large basin of attraction against possible perturbations. 

We verify our claims through the implementation of our scheme on YAMABICO 
mobile robot equipped with a laser range sensor. The robot conducts navigational 
tasks under the following assumptions and conditions. (1) The robot cannot access 
its global position, but it navigates depending on its local sensory (range image) 
input. (2) There is no explicit landmarks accessible to the robot in the adopted 
workspace. (3) The robot learns tasks of cyclic routing by following guidance of a 
trainer. (4) The navigation should be robust enough against possible noise in the 
environment. 

2 NAVIGATION ARCHITECTURE 

The YAMABICO mobile robot [Yuta and Iijima 90] was used as an experimen­
tal platform. The robot can obtain range images by a range finder consisting of 
laser projectors and three CCD cameras. The ranges for 24 directions, covering a 
160 degree arc in front of the robot, are measured every 150 milliseconds. In our 
formulation, maneuvering commands are generated as the output of a composite 
system consisting of two levels [Tani and Fukumura 94]. The control level generates 
a collision-free, smooth trajectory using the range image, while the navigation level 
directs the control level in a macroscopic sense, responding to the sequential branch­
ing that appears in the sensory flows . The control level is fixed; the navigation level, 
on the other hand, can be adapted through learning. Firstly, let us describe the 
control level. The robot can sense the forward range readings of the surrounding 
environment, given in robot-centered polar coordinates by ri (1 ~ i ~ N). The an­
gular range profile Ri is obtained by smoothing the original range readings through 
applying an appropriate Gaussian filter. The maneuvering focus of the robot is the 
maximum (the angular direction of the largest range) in this range profile. The 
robot proceeds towards the maximum of the profile (an open space in the environ­
ment). The navigation level focuses on the topological changes in the range profile 
as the robot moves. As the robot moves through a given workspace, the profile grad­
ually changes until another local peak appears when the robot reaches a branching 
point. At this moment of branching the navigation level decides whether to transfer 
the focus to the new local peak or to remain with the current one. It is noted that 
this branching could be quite undeterministic one if applied to rugged obstacle en­
vironment. The robot is likely to fail to detect branching points frequently in such 
environment. 

The navigation level determines the branching by utilizing the range image obtained 
at branch points. Since the pertinent information in the range profile at a given 
moment is assumed to be only a small fraction of the total, we employ a vector 
quantization technique, known as the Kohonen network [Kohonen 82]' so that the 
information in the profile may be compressed into specific lower-dimensional data. 
The Kohonen network employed here consists of an I-dimensional lattice with m 
nodes along each dimension (l=3 and m=6 for the experiments with YAMABICO). 
The range image consisting of 24 values is input to the lattice, then the most 
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Figure 1: Neural architecture for skill-based learning. 
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highly activated unit in the lattice, the "winner" unit, is found. The address of 
the winner unit in the lattice denotes the output vector of the network. Therefore, 
the navigation level receives the sensory input compressed into three dimensional 
data. The next section will describe how the robot can generate right branching 
sequences upon receiving the compressed range image. 

3 Formulation 

3.1 Learning state-action map 

The neural adaptation schemes are applied to the navigation level so that it can 
generate an adequate state-action map for a given task. Although some might con­
sider that such map can be represented by using a layered feed-forward network 
with the inputs of the sensory image and the outputs of the motor command, this 
is not always true. The local sensory input does not always correspond uniquely to 
the true state of the robot (the sensory inputs could be the same for different robot 
positions). Therefore, there exists an ambiguity in determining the motor command 
solely from sensory inputs. This is a typical example of so-called non-Markovian 
problems which have been discussed by Lin and Mitchell [Lin and Mitchell 92]. In 
order to solve this ambiguity, a representation of contexts which are memories of 
past sensory sequences is required. For this purpose, a recurrent neural network 
(RNN) [Elman 90] was employed since its recurrent context states could represent 
the memory of past sequences. The employed neural architecture is shown in Fig­
ure. 1. The sensory input Pn and the context units en determine the appropriate 
motor command Xn+l' The motor command Xn takes a binary value of 0 (staying at 
the current branch) or 1 (a transit to a new branch). The RNN learning of sensory­
motor (Pn,xn+d sequences, sampled through the supervised training, can build the 
desired state-action map by self-organizing adequate internal representation in time. 
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(a) 

task space internal state space 

(b) 

task space internal state space 

Figure 2: The desired trajectories in the task space and its mapping to the internal 
state space. 

3.2 Embedding problem 

The objective of the neural learning is to embed a task into certain global attractor 
dynamics which are generated from the coupling of the internal neural function and 
the environment. Figure 2 illustrates this idea. We define the internal state of the 
robot by the state of the RNN. The internal dynamics, which are coupled with the 
environmental dynamics through the sensory-motor loop, evolve as the robot travels 
in the task space. We assume that the desired vector field in the task space forms a 
global attractor, such as a fixed point for a homing task or limit cycling for a cyclic 
routing task. All that the robot has to do is to follow this vector flow by means of its 
internal state-action map. This requires a condition: the vector field in the internal 
state space should be self-organized as being topologically equivalent to that in the 
task space in order that the internal state determine the action (motor command) 
uniquely. This is the embedding problem from the task space to the internal state 
space, and RNN learning can attain this, using various training trajectories. This 
analysis conjectured that the trajectories in the task space can always converge into 
the desired one as long as the task is embedded into the global attractor in the 
internal state space. 

4 Experiment 

4.1 Task and training procedure 

Figure 3 shows an example of the navigation task, (which is adopted for the physical 
experiment in a later section). The task is for the robot to repeat looping of a figure 
of '8' and '0' in sequence. The task is not trivial because at the branching position 
A the robot has to decide whether to go '8' or '0' depending on its memory of the 
last sequence. 

The robot learns this navigation task through supervision by a trainer. The trainer 
repeatedly guides the robot to the desired loop from a set of arbitrarily selected 
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Figure 3: Cyclic routing task, in which YAMABICO has to trace a figure of eight 
followed by a single loop. 

Figure 4: Trace of test travels for cyclic routing. 

initial locations. (The training was conducted with starting the robot from 10 
arbitrarily selected initial locations in the workspace.) In actual training, the robot 
moves by the navigation of the control level and stops at each branching point, 
where the branching direction is taught by the trainer. The sequence of range 
images and teaching branching commands at those bifurcation points are fed into 
the neural architecture as training data. The objective of training RNN is to find the 
optimal weight matrix that minimizes the mean square error of the training output 
(branching decision) sequences associating with sensory inputs (outputs of Kohonen 
network). The weight matrix can be obtained through an iterative calculation of 
back-propagation through time (BPTT) [Rumelhart et al. 86]. 

4.2 Results 

After the training, we examined how the robot achieves the trained task. The robot 
was started from arbitrary initial positions for this test. Fig. 4 shows example test 
travels. The result showed that the robot always converged to the desired loop 
regardless of its starting position. The time required to converge, however, took a 
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Figure 5: The sequence of activations in input and context units during the cycling 
travel. 

certain period that depended on the case. The RNN initially could not function 
correctly because of the arbitrary initial setting of the context units. However, while 
the robot wandered around the workspace, the RNN became situated (recovered the 
context) as it encountered pre-learned sensory sequences. Thereafter, its navigation 
converged to the cycling loop. 

Even after convergence, the robot could, by chance, leave the loop, under the in­
fluence of noise. However, the robot always came back to the loop after a while. 
These observations indicate that the robot learned the objective navigational task 
as embedded in a global attractor of limit cycling. 

It is interesting to examine how the task is encoded in the internal dynamics of 
the RNN. We investigated the activation patterns of RNN after its convergence 
into the loop. The results are shown in Fig. 5. The input and context units at 
each branching point are shown as three white and two black bars, respectively. 
One cycle (the completion of two routes of '0' and '8 ') are aligned vertically as one 
column. The figure shows those of four continuous cycles. It can be seen that robot 
navigation is exposed to much noise; the sensing input vector becomes unstable 
at particular locations, and the number of branchings in one cycle is not constant 
(i.e. some branching points are undeterministic). The rows labeled as (A) and (A ') 
are branches to the routes of '0' and '8', respectively. In this point, the sensory 
input receives noisy chattering of different patterns independent of (A) or (A') . The 
context units, on the other hand, is completely identifiable between (A) and (A') , 
which shows that the task sequence between two routes (a single loop and an eight) 
is rigidly encoded internally, even in a noisy environment. In further experiments in 
more rugged obstacle environments, we found that this sort of structural stability 
could not be always assured. When the undeterministicity in the branching exceeds 
a certain limit , the desired dynamical structure cannot be preserved. 
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5 Summary and Discussion 

The navigation learning problem was formulated from the dynamical systems per­
spective. Our experimental results showed that the robot can learn the goal-directed 
navigation by embedding the desired task trajectories in the internal state space 
through the RNN training. It was also shown that the robot achieves the navi­
gational tasks in terms of convergence of attract or dynamics which emerge in the 
coupling of the internal and the environmental dynamics. Since the dynamical 
coherence arisen in this coupling leads to the robust navigation of the robot, the 
intrinsic mechanism presented here is characterized by the term "autonomy". 

Finally, it is interesting to study how robots can obtain analogical models of the 
environment rather than state-action maps for adapting to flexibly changed goals. 
We discuss such formulation based on the dynamical systems approach elsewhere 
[Tani 96]. 
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