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Abstract 

This paper investigates learning in a lifelong context. Lifelong learning 
addresses situations in which a learner faces a whole stream of learn­
ing tasks. Such scenarios provide the opportunity to transfer knowledge 
across multiple learning tasks, in order to generalize more accurately from 
less training data. In this paper, several different approaches to lifelong 
learning are described, and applied in an object recognition domain. It 
is shown that across the board, lifelong learning approaches generalize 
consistently more accurately from less training data, by their ability to 
transfer knowledge across learning tasks. 

1 Introduction 

Supervised learning is concerned with approximating an unknown function based on exam­
ples. Virtually all current approaches to supervised learning assume that one is given a set 
of input-output examples, denoted by X, which characterize an unknown function, denoted 
by f. The target function f is drawn from a class of functions, F, and the learner is given a 
space of hypotheses, denoted by H, and an order (preference/prior) with which it considers 
them during learning. For example, H might be the space of functions represented by an 
artificial neural network with different weight vectors. 

While this formulation establishes a rigid framework for research in machine learning, it 
dismisses important aspects that are essential for human learning. Psychological studies 
have shown that humans often employ more than just the training data for generalization. 
They are often able to generalize correctly even from a single training example [2, 10]. One 
of the key aspects of the learning problem faced by humans, which differs from the vast 
majority of problems studied in the field of neural network learning, is the fact that humans 
encounter a whole stream of learning problems over their entire lifetime. When faced with 
a new thing to learn, humans can usually exploit an enormous amount of training data and 
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experiences that stem from other, related learning tasks. For example, when learning to drive 
a car, years of learning experience with basic motor skills, typical traffic patterns, logical 
reasoning, language and much more precede and influence this learning task. The transfer of 
knowledge across learning tasks seems to play an essential role for generalizing accurately, 
particularly when training data is scarce. 

A framework for the study of the transfer of knowledge is the lifelong learning framework. 
In this framework, it is assumed that a learner faces a whole collection of learning problems 
over its entire lifetime. Such a scenario opens the opportunity for synergy. When facing its 
n-th learning task, a learner can re-use knowledge gathered in its previous n - 1 learning 
tasks to boost the generalization accuracy. 

In this paper we will be interested in the most simple version of the lifelong learning problem, 
in which the learner faces a family of concept learning tasks. More specifically, the functions 
to be learned over the lifetime of the learner, denoted by 11 , 12 , 13 , .. . E F , are all of the type 
I : I --+ {O, I} and sampled from F. Each function I E {II , h ,13, . . . } is an indicator 
function that defines a particular concept: a pattern x E I is member of this concept if 
and only if I(x) = 1. When learning the n-th indicator function, In , the training set X 
contains examples of the type (x , In(x)) (which may be distorted by noise). In addition to 
the training set, the learner is also given n - 1 sets of examples of other concept functions, 
denoted by Xk (k = 1, .. . , n - I). Each Xk contains training examples that characterize 
Ik. Since this additional data is desired to support learning In, Xk is called a support set 
for the training set X . 

An example of the above is the recognition of faces [5, 7]. When learning to recognize the 
n-th person, say IBob, the learner is given a set of positive and negative example of face 
images of this person. In lifelong learning, it may also exploit training information stemming 
from other persons, such as I E {/Rieh, IMike , IDave , ... }. The support sets usually cannot be 
used directly as training patterns when learning a new concept, since they describe different 
concepts (hence have different class labels). However, certain features (like the shape of the 
eyes) are more important than others (like the facial expression, or the location of the face 
within the image). Once the invariances of the domain are learned, they can be transferred 
to new learning tasks (new people) and hence improve generalization. 

To illustrate the potential importance of related learning tasks in lifelong learning, this 
paper does not present just one particular approach to the transfer of knowledge. Instead, 
it describes several, all of which extend conventional memory-based or neural network 
algorithms. These approaches are compared with more traditional learning algorithms, i.e., 
those that do not transfer knowledge. The goal of this research is to demonstrate that, 
independent of a particular learning approach, more complex functions can be learned from 
less training data iflearning is embedded into a lifelong context. 

2 Memory-Based Learning Approaches 

Memory-based algorithms memorize all training examples explicitly and interpolate them 
at query-time. We will first sketch two simple, well-known approaches to memory-based 
learning, then propose extensions that take the support sets into account. 

2.1 Nearest Neighbor and Shepard's Method 

Probably the most widely used memory-based learning algorithm is J{ -nearest neighbor 
(KNN) [15]. Suppose x is a query pattern, for which we would like to know the output y. 
KNN searches the set of training examples X for those J{ examples (Xi, Yi ) E X whose 
input patterns Xi are nearest to X (according to some distance metric, e.g., the Euclidian 
distance). It then returns the mean output value k 2:= Yi of these nearest neighbors. 

Another commonly used method, which is due to Shepard [13], averages the output values 
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of all training examples but weights each example according to the inverse distance to the 

query :~~~t x. ( ) ( I) -I 
L Ilx - ~: II + E· L Ilx - X i II + E 

(x"y.)EX (x. ,y.)EX 

(1) 

Here E > 0 is a small constant that prevents division by zero. Plain memory-based learning 
uses exclusively the training set X for learning. There is no obvious way to incorporate the 
support sets, since they carry the wrong class labels. 

2.2 Learning A New Representation 

The first modification of memory-based learning proposed in this paper employs the support 
sets to learn a new representation of the data. More specifically, the support sets are employed 
to learn a function, denoted by 9 : I --+ I', which maps input patterns in I to a new space, 
I' . This new space I' forms the input space for a memory-based algorithm. 

Obviously, the key property of a good data representations is that multiple examples of a 
single concept should have a similar representation, whereas the representation of an example 
and a counterexample of a concept should be more different. This property can directly be 
transformed into an energy function for g: 

n-I ( ) 

E:= ~ (X ,y~EXk (X"y~EXk Ilg(x)-g(x')11 ( X"y~EXk Ilg( x )-g(x')11 (2) 

Adjusting 9 to minimize E forces the distance between pairs of examples of the same 
concept to be small, and the distance between an example and a counterexample of a concept 
to be large. In our implementation, 9 is realized by a neural network and trained using the 
Back-Propagation algorithm [12]. 

Notice that the new representation, g, is obtained through the support sets. Assuming that 
the learned representation is appropriate for new learning tasks, standard memory-based 
learning can be applied using this new representation when learning the n-th concept. 

2.3 Learning A Distance Function 

An alternative way for exploiting support sets to improve memory-based learning is to learn 
a distance function [3, 9]. This approach learns a function d : I x I --+ [0, I] which accepts 
two input patterns, say x and x' , and outputs whether x and x' are members of the same 
concept, regardless what the concept is. Training examples for d are 

(( x , x'),I) ify=y'=l 
((x, x'), 0) if(y=IAy'=O)or(y=OAy'=I). 

They are derived from pairs of examples (x , y) , (x', y') E Xk taken from a single support 
set X k (k = 1, . .. , n - I). In our implementation, d is an artificial neural network trained 
with Back-Propagation. Notice that the training examples for d lack information concerning 
the concept for which they were originally derived. Hence, all support sets can be used to 
train d. After training, d can be interpreted as the probability that two patterns x, x' E I are 
examples of the same concept. 

Once trained, d can be used as a generalized distance function for a memory-based approach. 
Suppose one is given a training set X and a query point x E I. Then, for each positive 
example (x' , y' = I) EX, d( x , x') can be interpreted as the probability that x is a member 
of the target concept. Votes from multiple positive examples (XI, I) , (X2' I), ... E X are 
combined using Bayes' rule, yielding 

Prob(fn(x)=I) .- 1- (I + II I:(~(::~,))-I (3) 
(x' ,y'=I)EXk 
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Notice that d is not a distance metric. It generalizes the notion of a distance metric, because 
the triangle inequality needs not hold, and because an example of the target concept x' can 
provide evidence that x is not a member of that concept (if d(x, x') < 0.5). 

3 Neural Network Approaches 

To make our comparison more complete, we will now briefly describe approaches that rely 
exclusively on artificial neural networks for learning In. 

3.1 Back-Propagation 

Standard Back-Propagation can be used to learn the indicator function In, using X as training 
set. This approach does not employ the support sets, hence is unable to transfer knowledge 
across learning tasks. 

3.2 Learning With Hints 

Learning with hints [1, 4, 6, 16] constructs a neural network with n output units, one for 
each function Ik (k = 1,2, .. . , n). This network is then trained to simultaneously minimize 
the error on both the support sets {Xk} and the training set X. By doing so, the internal 
representation of this network is not only determined by X but also shaped through the 
support sets {X k }. If similar internal representations are required for al1 functions Ik 
(k = 1,2, .. . , n), the support sets provide additional training examples for the internal 
representation. 

3.3 Explanation-Based Neural Network Learning 

The last method described here uses the explanation-based neural network learning al­
gorithm (EBNN), which was original1y proposed in the context of reinforcement learning 
[8, 17]. EBNN trains an artificial neural network, denoted by h : I ----+ [0, 1], just like 
Back-Propagation. However, in addition to the target values given by the training set X, 
EBNN estimates the slopes (tangents) of the target function In for each example in X. More 
specifically, training examples in EBNN are of the sort (x, In (x), \7 xl n (x)), which are fit 
using the Tangent-Prop algorithm [14]. The input x and target value In(x) are taken from 
the trai ning set X. The third term, the slope \7 xl n ( X ), is estimated using the learned distance 
function d described above. Suppose (x', y' = 1) E X is a (positive) training example. 
Then, the function dx ' : I ----+ [0, 1] with dx ' (z) := d(z , x') maps a single input pattern to 
[0, 1], and is an approximation to In. Since d( z, x') is represented by a neural network and 
neural networks are differentiable, the gradient 8dx ' (z) /8z is an estimate of the slope of In 
at z. Setting z := x yields the desired estimate of \7 xln (x) . As stated above, both the target 
value In (x) and the slope vector \7 x In (x) are fit using the Tangent-Prop algorithm for each 
training example x EX . 

The slope \7 xln provides additional information about the target function In. Since d is 
learned using the support sets, EBNN approach transfers knowledge from the support sets 
to the new learning task. EBNN relies on the assumption that d is accurate enough to yield 
helpful sensitivity information. However, since EBNN fits both training patterns (values) 
and slopes, misleading slopes can be overridden by training examples. See [17] for a more 
detailed description of EBNN and further references. 

4 Experimental Results 

All approaches were tested using a database of color camera images of different objects 
(see Fig. 3.3). Each of the object in the database has a distinct color or size. The n-th 
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Figure 1: The sup­
port sets were com­
piled out of a hundred 
images of a bottle, a 
hat, a hammer, a coke 
can, and a book. The 
n-th learning tasks 
involves distinguish­
ing the shoe from the 
sunglasses. Images 
were subsampled to 
a 100x 100 pixel ma­
trix (each pixel has a 
color, saturation, and 
a brightness value), 
shown on the right 
side. 

learning task was the recognition of one of these objects, namely the shoe. The previous 
n - 1 learning tasks correspond to the recognition of five other objects, namely the bottle, 
the hat, the hammer, the coke can, and the book. To ensure that the latter images could 
not be used simply as additional training data for In, the only counterexamples of the shoe 
was the seventh object, the sunglasses. Hence, the training set for In contained images of 
the shoe and the sunglasses, and the support sets contained images of the other five objects. 
The object recognition domain is a good testbed for the transfer of knowledge in lifelong 
learning. This is because finding a good approximation to In involves recognizing the target 
object invariant of rotation, translation, scaling in size, change of lighting and so on. Since 
these invariances are common to all object recognition tasks, images showing other objects 
can provide additional information and boost the generalization accuracy. 

Transfer of knowledge is most important when training data is scarce. Hence, in an initial 
experiment we tested all methods using a single image of the shoe and the sunglasses only. 
Those methods that are able to transfer knowledge were also provided 100 images of each 
of the other five objects. The results are intriguing. The generalization accuracies 

KNN Shepard repro g+Shep. distanced Back-Prop hints EBNN 
60.4% 60.4% 74.4% 75.2% 59.7% 62.1% 74.8% 
±8.3% ±8.3% ±18.5% ±18.9% ±9.0% ±10.2% ±11.1% 

illustrate that all approaches that transfer knowledge (printed in bold font) generalize sig­
nificantly better than those that do not. With the exception of the hint learning technique, 
the approaches can be grouped into two categories: Those which generalize approximately 
60% of the testing set correctly, and those which achieve approximately 75% generaliza­
tion accuracy. The former group contains the standard supervised learning algorithms, and 
the latter contains the "new" algorithms proposed here, which are capable of transferring 
knOWledge. The differences within each group are statistically not significant, while the 
differences between them are (at the 95% level). Notice that random guessing classifies 50% 
of the testing examples correctly. 

These results suggest that the generalization accuracy merely depends on the particular 
choice of the learning algorithm (memory-based vs. neural networks). Instead, the main 
factor determining the generalization accuracy is the fact whether or not knowledge is 
transferred from past learning tasks. 
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Figure 2: Generalization accuracy as a function of training examples, measured on an 
independent test set and averaged over 100 experiments. 95%-confidence bars are also 
displayed. 

What happens as more training data arrives? Fig. 2 shows generalization curves with 
increasing numbers of training examples for some of these methods. As the number of 
training examples increases, prior knowledge becomes less important. After presenting 20 
training examples, the results 

KNN Shepard repro g+Shep. distance d Back-Prop hints EBNN 
81.0% 70.5% 81.7% 87.3% 88.4% n_avail. 90.8% 
±3.4% ±4.9% ±2.7% ±O_9% ±2.5% ±2.7% 

illustrate that some of the standard methods (especially Back-Propagation) generalize about 
as accurately as those methods that exploit support sets. Here the differences in the underlying 
learning mechanisms becomes more dominant. However, when comparing lifelong learning 
methods with their corresponding standard approaches, the latter ones are stiIl inferior: Back­
Propagation (88.4%) is outperformed by EBNN (90.8%), and Shepard's method (70.5%) 
generalizes less accurately when the representation is learned (81.7%) or when the distance 
function is learned (87.3%). All these differences are significant at the 95% confidence level. 

5 Discussion 

The experimental results reported in this paper provide evidence that learning becomes easier 
when embedded in a lifelong learning context. By transferring knowledge across related 
learning tasks, a learner can become "more experienced" and generalize better. To test 
this conjecture in a more systematic way, a variety of learning approaches were evaluated 
and compared with methods that are unable to transfer knowledge. It is consistently found 
that lifelong learning algorithms generalize significantly more accurately, particularly when 
training data is scarce. 

Notice that these results are well in tune with other results obtained by the author. One of 
the approaches here, EBNN, has extensively been studied in the context of robot perception 
[11], reinforcement learning for robot control, and chess [17]. In all these domains, it has 
consistently been found to generalize better from less training data by transferring knowledge 
from previous learning tasks. The results are also consistent with observations made about 
human learning [2, 10], namely that previously learned knowledge plays an important role 
in generalization, particularly when training data is scarce. [18] extends these techniques to 
situations where most support sets are not related.w 

However, lifelong learning rests on the assumption that more than a single task is to be 
learned, and that learning tasks are appropriately related. Lifelong learning algorithms 
are particularly well-suited in domains where the costs of collecting training data is the 
dominating factor in learning, since these costs can be amortized over several learning tasks. 
Such domains include, for example, autonomous service robots which are to learn and 
improve over their entire lifetime. They include personal software assistants which have 
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to perform various tasks for various users. Pattern recognition, speech recognition, time 
series prediction, and database mining might be other, potential application domains for the 
techniques presented here. 
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