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Abstract 

Sigmoid type belief networks, a class of probabilistic neural net­
works, provide a natural framework for compactly representing 
probabilistic information in a variety of unsupervised and super­
vised learning problems. Often the parameters used in these net­
works need to be learned from examples. Unfortunately, estimat­
ing the parameters via exact probabilistic calculations (i.e, the 
EM-algorithm) is intractable even for networks with fairly small 
numbers of hidden units. We propose to avoid the infeasibility of 
the E step by bounding likelihoods instead of computing them ex­
actly. We introduce extended and complementary representations 
for these networks and show that the estimation of the network 
parameters can be made fast (reduced to quadratic optimization) 
by performing the estimation in either of the alternative domains. 
The complementary networks can be used for continuous density 
estimation as well. 

1 Introduction 

The appeal of probabilistic networks for knowledge representation, inference, and 
learning (Pearl, 1988) derives both from the sound Bayesian framework and from 
the explicit representation of dependencies among the network variables which al­
lows ready incorporation of prior information into the design of the network. The 
Bayesian formalism permits full propagation of probabilistic information across the 
network regardless of which variables in the network are instantiated. In this sense 
these networks can be "inverted" probabilistically. 

This inversion, however, relies heavily on the use of look-up table representations 
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of conditional probabilities or representations equivalent to them for modeling de­
pendencies between the variables. For sparse dependency structures such as trees 
or chains this poses no difficulty. In more realistic cases of reasonably interdepen­
dent variables the exact algorithms developed for these belief networks (Lauritzen & 
Spiegelhalter, 1988) become infeasible due to the exponential growth in the size of 
the conditional probability tables needed to store the exact dependencies. Therefore 
the use of compact representations to model probabilistic interactions is unavoidable 
in large problems. As belief network models move away from tables, however, the 
representations can be harder to assess from expert knowledge and the important 
role of learning is further emphasized. 

Compact representations of interactions between simple units have long been em­
phasized in neural networks. Lacking a thorough probabilistic interpretation, how­
ever, classical feed-forward neural networks cannot be inverted in the above sense; 
e.g. given the output pattern of a feed-forward neural network it is not feasible 
to compute a probability distribution over the possible input patterns that would 
have resulted in the observed output. On the other hand, stochastic neural net­
works such as Boltzman machines admit probabilistic interpretations and therefore, 
at least in principle, can be inverted and used as a basis for inference and learning 
in the presence of uncertainty. 

Sigmoid belief networks (Neal, 1992) form a subclass of probabilistic neural networks 
where the activation function has a sigmoidal form - usually the logistic function. 
Neal (1992) proposed a learning algorithm for these networks which can be viewed 
as an improvement ofthe algorithm for Boltzmann machines. Recently Hinton et al. 
(1995) introduced the wake-sleep algorithm for layered bi-directional probabilistic 
networks. This algorithm relies on forward sampling and has an appealing coding 
theoretic motivation. The Helmholtz machine (Dayan et al., 1995), on the other 
hand, can be seen as an alternative technique for these architectures that avoids 
Gibbs sampling altogether. Dayan et al. also introduced the important idea of 
bounding likelihoods instead of computing them exactly. Saul et al. (1995) sub­
sequently derived rigorous mean field bounds for the likelihoods. In this paper we 
introduce the idea of alternative - extended and complementary - representations 
of these networks by reinterpreting the nonlinearities in the activation function. We 
show that deriving likelihood bounds in the new representational domains leads to 
efficient (quadratic) estimation procedures for the network parameters. 

2 The probability representations 

Belief networks represent the joint probability of a set of variables {S} as a product 
of conditional probabilities given by 

n 

P(St, ... , Sn) = IT P(Sk Ipa[k]) , (1) 
k=l 

where the notation pa[k], "parents of Sk", refers to all the variables that directly 
influence the probability of Sk taking on a particular value (for equivalent represen­
tations, see Lauritzen et al. 1988). The fact that the joint probability can be written 
in the above form implies that there are no "cycles" in the network; i.e. there exists 
an ordering of the variables in the network such that no variable directly influences 
any preceding variables. 

In this paper we consider sigmoid belief networks where the variables S are binary 
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(0/1), the conditional probabilities have the form 

P(Ss:lpa[i]) = g( (2Ss: - 1) L WS:jSj) 
j 

(2) 

and the weights Wij are zero unless Sj is a parent of Si, thus preserving the feed­
forward directionality of the network. For notational convenience we have assumed 
the existence of a bias variable whose value is clamped to one. The activation 
function g(.) is chosen to be the cumulative Gaussian distribution function given by 

1 jX .l ~ 1 100 .l( )~ g(x) = -- e- 2 Z dz = -- e- 2 z-x dz (3) 
..j2; - 00 ..j2; 0 

Although very similar to the standard logistic function, this activation function 
derives a number of advantages from its integral representation. In particular, we 
may reinterpret the integration as a marginalization and thereby obtain alternative 
representations for the network. We consider two such representations. 

We derive an extended representation by making explicit the nonlinearities in the 
activation function. More precisely, 

P(Silpa[i]) g( (2Si - 1) L WijSj) 
j 

(4) 

This suggests defining the extended network in terms of the new conditional proba­
bilities P(Si, Zs:lpa[i]). By construction then the original binary network is obtained 
by marginalizing over the extra variables Z. In this sense the extended network is 
(marginally) equivalent to the binary network. 

We distinguish a complementary representation from the extended one by writing 
the probabilities entirely in terms of continuous variables!. Such a representation 
can be obtained from the extended network by a simple transformation of variables. 
The new continuous variables are defined by Zs: = (2Si - l)Zi, or, equivalently, 
by Zi = IZs: I and Si = O( Zs:) where 0(·) is the step function. Performing this 
transformation yields 

P(Z-'I [.]) - _1_ -MZi-L: . Wij9(Zj)1~ 
I pa z - rn=e J 

V 211" 
(5) 

which defines a network of conditionally Gaussian variables. The original network 
in this case can be recovered by conditional marginalization over Z where the con­
ditioning variables are O(Z). 

Figure 1 below summarizes the relationships between the different representations. 
As will become clear later, working with the alternative representations instead 
of the original binary representation can lead to more flexible and efficient (least­
squares) parameter estimation. 

3 The learning problem 

We consider the problem of learning the parameters of the network from instantia­
tions of variables contained in a training set. Such instantiations, however, need not 

1 While the binary variables are the outputs of each unit the continuous variables pertain 
to the inputs - hence the name complementary. 
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Figure 1: The relationship between the alternative representations. 
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be complete; there may be variables that have no value assignments in the training 
set as well as variables that are always instantiated. The tacit division between 
hidden (H) and visible (V) variables therefore depends on the particular training 
example considered and is not an intrinsic property of the network. 

To learn from these instantiations we adopt the principle of maximum likelihood 
to estimate the weights in the network. In essence, this is a density estimation 
problem where the weights are chosen so as to match the probabilistic behavior 
of the network with the observed activities in the training set. Central to this 
estimation is the ability to compute likelihoods (or log-likelihoods) for any (partial) 
configuration of variables appearing in the training set. In other words, if we let 
XV be the configuration of visible or instantiated variables2 and XH denote the 
hidden or uninstantiated variables, we need to compute marginal probabilities of 
the form 

(6) 
XH 

If the training samples are independent, then these log marginals can be added to 
give the overall log-likelihood of the training set 

10gP(training set) = L:logP(XVt) (7) 

Unfortunately, computing each of these marginal probabilities involves summing 
(integrating) over an exponential number of different configurations assumed by 
the hidden variables in the network. This renders the sum (integration) intractable 
in all but few special cases (e.g. trees and chains). It is possible, however, to instead 
find a manageable lower bound on the log-likelihood and optimize the weights in 
the network so as to maximize this bound. 

To obtain such a lower bound we resort to Jensen's inequality: 

10gP(Xv) 10gL p(XH,XV) = 10gLQ(XH)P(XH,;V) 
XH XH Q(X ) 

> ~Q(XH)1 p(XH,XV) (8) f; og Q(XH) 

Although this bound holds for all distributions Q(X) over the hidden variables, the 
accuracy of the bound is determined by how closely Q approximates the posterior 
distribution p(XH IXv) in terms of the Kullback-Leibler divergence; if the approx­
imation is perfect the divergence is zero and the inequality is satisfied with equality. 
Suitable choices for Q can make the bound both accurate and easy to compute. 
The feasibility of finding such Q, however, is highly dependent on the choice of the 
representation for the network. 

2To postpone the issue of representation we use X to denote 5, {5, Z}, or Z depending 
on the particular representation chosen. 
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4 Likelihood bounds in different representations 

To complete the derivation of the likelihood bound (equation 8) we need to fix the 
representation for the network. Which representation to select, however, affects the 
quality and accuracy of the bound. In addition, the accompanying bound of the 
chosen representation implies bounds in the other two representational domains as 
they all code the same distributions over the observables. In this section we illustrate 
these points by deriving bounds in the complementary and extended representations 
and discuss the corresponding bounds in the original binary domain. 

Now, to obtain a lower bound we need to specify the approximate posterior Q. In 
the complementary representation the conditional probabilities are Gaussians and 
therefore a reasonable approximation (mean field) is found by choosing the posterior 
approximation from the family of factorized Gaussians: 

Q(Z) = IT _1_e-(Zi-hi)~/2 (9) 
i..;?:; 

Substituting this into equation 8 we obtain the bound 

log P(S*) ~ -~ L (hi - E j Jij g(hj »2 - ~ L Ji~g(hj )g(-hj ) (10) 
i ij 

The means hi for the hidden variables are adjustable parameters that can be tuned 
to make the bound as tight as possible. For the instantiated variables we need 
to enforce the constraints g( hi) = S: to respect the instantiation. These can be 
satisfied very accurately by setting hi = 4(2S: - 1). A very convenient property 
of this bound and the complementary representation in general is the quadratic 
weight dependence - a property very conducive to fast learning. Finally, we note 
that the complementary representation transforms the binary estimation problem 
into a continuous density estimation problem. 

We now turn to the interpretation of the above bound in the binary domain. The 
same bound can be obtained by first fixing the inputs to all the units to be the 
means hi and then computing the negative total mean squared error between the 
fixed inputs and the corresponding probabilistic inputs propagated from the parents. 
The fact that this procedure in fact gives a lower bound on the log-likelihood would 
be more difficult to justify by working with the binary representation alone. 

In the extended representation the probability distribution for Zi is a truncated 
Gaussian given Si and its parents. We therefore propose the partially factorized 
posterior approximation: 

(11) 

where Q(ZiISi) is a truncated Gaussian: 

Q(Zi lSi) = 1 _1_e- t(Zi-(2S,-1)hi)~ 
g« 2Si- 1)h i ) ..;?:; (12) 

As in the complementary domain the resulting bound depends quadratically on the 
weights. Instead of writing out the bound here, however, it is more informative to 
see its derivation in the binary domain. 

A factorized posterior approximation (mean field) Q(S) = n. q~i(1 - qi)l-S, for 
the binary network yields a bound I I 

10gP(S*) > L {(Si 10gg(L j J,jSj») + (1- Si) 10g(l- 9(L; Ji;S;»)} 
i 
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(13) 

where the averages (.) are with respect to the Q distribution. These averages, 
however, do not conform to analytical expressions. The tractable posterior ap­
proximation in the extended domain avoids the problem by implicitly making the 
following Legendre transformation: 

1 2 1 2 1 2 
logg(x) = ["2x + logg(x)] -"2x ~ AX - G(A) - "2x (14) 

which holds since x 2 /2 + logg(x) is a convex function. Inserting this back into the 
relevant parts of equation 13 and performing the averages gives 

10gP(S*) > L {[qjAj - (1- qj),Xd Lhjqj - qjG(Ai) - (1- qj)G('xi)} 
j 

I", 2 1",2 ( -"2(L.,.. Jijqj) -"2 L.,.. Jjjqj 1- gj) 
j ij 

(15) 

which is quadratic in the weights as expected. The mean activities q for the hidden 
variables and the parameters A can be optimized to make the bound tight. For the 
instantiated variables we set qi = S; . 

5 Numerical experiments 

To test these techniques in practice we applied the complementary network to the 
problem of detecting motor failures from spectra obtained during motor operation 
(see Petsche et al. 1995). We cast the problem as a continuous density estimation 
problem. The training set consisted of 800 out of 1283 FFT spectra each with 319 
components measured from an electric motor in a good operating condition but 
under varying loads. The test set included the remaining 483 FFTs from the same 
motor in a good condition in addition to three sets of 1340 FFTs each measured 
when a particular fault was present. The goal was to use the likelihood of a test 
FFT with respect to the estimated density to determine whether there was a fault 
present in the motor. 

We used a layered 6 -+ 20 -+ 319 generative model to estimate the training set 
density. The resulting classification error rates on the test set are shown in figure 2 
as a function of the threshold likelihood. The achieved error rates are comparable 
to those of Petsche et al. (1995). 

6 Conclusions 

Network models that admit probabilistic formulations derive a number of advan­
tages from probability theory. Moving away from explicit representations of de­
pendencies, however, can make these properties harder to exploit in practice. We 
showed that an efficient estimation procedure can be derived for sigmoid belief 
networks, where standard methods are intractable in all but a few special cases 
(e.g. trees and chains). The efficiency of our approach derived from the combina­
tion of two ideas. First, we avoided the intractability of computing likelihoods 
in these networks by computing lower bounds instead. Second, we introduced 
new representations for these networks and showed how the lower bounds in the 
new representational domains transform the parameter estimation problem into 
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Figure 2: The probability of error curves for missing a fault (dashed lines) and 
misclassifying a good motor (solid line) as a function of the likelihood threshold. 

quadratic optimization. 
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