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Abstract 

A new technique, termed soft assign, is applied for the first time 
to two classic combinatorial optimization problems, the travel­
ing salesman problem and graph partitioning. Soft assign , which 
has emerged from the recurrent neural network/statistical physics 
framework, enforces two-way (assignment) constraints without the 
use of penalty terms in the energy functions. The soft assign can 
also be generalized from two-way winner-take-all constraints to 
multiple membership constraints which are required for graph par­
titioning. The soft assign technique is compared to the softmax 
(Potts glass). Within the statistical physics framework, softmax 
and a penalty term has been a widely used method for enforcing the 
two-way constraints common within many combinatorial optimiza­
tion problems. The benchmarks present evidence that soft assign 
has clear advantages in accuracy, speed, parallelizabilityand algo­
rithmic simplicity over softmax and a penalty term in optimization 
problems with two-way constraints. 

1 Introduction 

In a series of papers in the early to mid 1980's, Hopfield and Tank introduced 
techniques which allowed one to solve combinatorial optimization problems with 
recurrent neural networks [Hopfield and Tank, 1985]. As researchers attempted 
to reproduce the original traveling salesman problem results of Hopfield and 
Tank, problems emerged, especially in terms of the quality of the solutions ob­
tained. More recently however, a number of techniques from statistical physics 
have been adopted to mitigate these problems. These include deterministic an­
nealing which convexifies the energy function in order help avoid some local min­
ima and the Potts glass approximation which results in a hard enforcement of 
a one-way (one set of) winner-take-all (WTA) constraint via the softmax. In 
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the late 80's, armed with these techniques optimization problems like the trav­
eling salesman problem (TSP) [Peterson and Soderberg, 1989] and graph partition­
ing [Peterson and Soderberg, 1989, Van den Bout and Miller III, 1990] were reex­
amined and much better results compared to the original Hopfield-Tank dynamics 
were obtained. 

However, when the problem calls for two-way interlocking WTA constraints, as 
do TSP and graph partitioning, the resulting energy function must still include 
a penalty term when the softmax is employed in order to enforce the second set 
of WTA constraints. Such penalty terms may introduce spurious local minima 
in the energy function and involve free parameters which are hard to set. A 
new technique, termed soft assign, eliminates the need for all such penalty terms. 
The first use of the soft assign was in an algorithm for the assignment problem 
[Kosowsky and Yuille, 1994] . It has since been applied to much more difficult 
optimization problems, including parametric assignment problems-point match­
ing [Gold et aI., 1994, Gold et aI., 1995, Gold et aI., 1996] and quadratic assign­
ment problems-graph matching [Gold et aI., 1996, Gold and Rangarajan, 1996, 
Gold, 1995] . 

Here, we for the first time apply the soft assign to two classic combinatorial op­
timization problems, TSP and graph partitioning. Moreover, we show that the 
soft assign can be generalized from two-way winner-take-all constraints to multiple 
membership constraints, which are required for graph partitioning (as described be­
low). We then run benchmarks against the older softmax (Potts glass) methods and 
demonstrate advantages in terms of accuracy, speed, parallelizability, and simplicity 
of implementation. 

It must be emphasized there are other conventional techniques, for solving 
some combinatorial optimization problems such as TSP, which remain supe­
rior to this method in certain ways [Lawler et aI., 1985]. (We think for some 
problems-specifically the type of pattern matching problems essential for cogni­
tion [Gold, 1995]-this technique is superior to conventional methods.) Even within 
neural networks, elastic net methods may still be better in certain cases. However, 
the elastic net uses only a one-way constraint in TSP. The main goal of this paper 
is to provide evidence, that when minimizing energy functions within the neural 
network framework, which have two-way constraints, the soft assign should be the 
technique of choice. We therefore compare it to the current dominant technique, 
softmax with a penalty term. 

2 Optimizing With Softassign 

2.1 The Traveling Salesman Problem 

The traveling salesman problem may be defined in the following way. Given a set of 
intercity distances {hab} which may take values in R+ , find the permutation matrix 
M such that the following objective function is minimized. 

1 N N N 

E 1(M) = 2 LLL hab M ai Mb(i6H) 
a==lb==li=l 

(1) 

subject to Va L~l Mai = 1 , Vi L~=l Mai = 1 , Vai Mai E {O, 1}. 

In the above objective hab represents the distance between cities a and b. M is a 
permutation matrix whose rows represent cities, and whose columns represent the 
day (or order) the city was visited and N is the number of cities. (The notation i EEl 1 
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is used to indicate that subscripts are defined modulo N, i.e. Ma(N+I) = Mal.) So 
if Mai = 1 it indicates that city a was visited on day i . 

Then, following [Peterson and Soderberg, 1989, Yuille and Kosowsky, 1994] we em­
ploy Lagrange multipliers and an x log x barrier function to enforce the constraints, 
as well as a 'Y term for stability, resulting in the following objective: 

1 N N N N N 

E2(M, 1',11) = 2 L L L babMaiMb(ieJ I ) - ~ L L M;i 
a=l b=l i=l a=l i=l 

INN N N N N 

+p I: I: Mai(10g M ai - 1) + I: J.la(I: Mai - 1) + I: lIi(I: Mai - 1) (2) 
a=l i=l a=l i=l i=l a=l 

In the above we are looking for a saddle point by minimizing with respect to M 
and maximizing with respect to I' and 11, the Lagrange multipliers. 

2.2 The Soft assign 

In the above formulation of TSP we have two-way interlocking WTA constraints. 
{Mai} must be a permutation matrix to ensure that a valid tour-one in which 
each city is visited once and only once-is described. A permutation matrix means 
all the rows and columns must add to one (and the elements must be zero or one) 
and therefore requires two-way WTA constraints-a set of WTA constraints on the 
rows and a set of WTA constraints on the columns. This set of two-way constraints 
may also be considered assignment constraints, since each city must be assigned to 
one and only one day (the row constraint) and each day must be assigned to one 
and only one city (the column constraint). 

These assignment constraints can be satisfied using a result from [Sinkhorn, 1964]. 
In [Sinkhorn, 1964] it is proven that any square matrix whose elements are all 
positive will converge to a doubly stochastic matrix just by the iterative process 
of alternatively normalizing the rows and columns. (A doubly stochastic matrix is 
a matrix whose elements are all positive and whose rows and columns all add up 
to one-it may roughly be thought of as the continuous analog of a permutation 
matrix). 

The soft assign simply employs Sinkhorn's technique within a deterministic anneal­
ing context. Figure 1 depicts the contrast between the soft assign and the softmax. 
In the softmax, a one-way WTA constraint is strictly enforced by normalizing over 
a vector. 

[Kosowsky and Yuille, 1994] used the soft assign to solve the assignment problem, 
i.e. minimize: - 2:~=1 2:{=1 MaiQai. For the special case of the quadratic assign­

ment problem, being solved here, by setting Q ai = - :J:i' and using the values of 
M from the previous iteration, we can at each iteration produce a new assignment 
problem for which the soft assign then returns a doubly stochastic matrix. As the 
temperature is lowered a series of assignment problems are generated, along with 
the corresponding doubly stochastic matrices returned by each soft assign , until a 
permutation matrix is reached. 

The update with the partial derivative in the preceding may be derived using a 
Taylor series expansion. See [Gold and Rangarajan, 1996, Gold, 1995] for details. 

The algorithm dynamics then become: 
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Softassign Softmax 

Positivity 
M.i = exP(I3Q.) 

1 
Positivity 

Mi = exP(I3Qi) 
Two-way constraints 

Row Normalization 1 

( ~) Mai--_1 

l:M.i 

0<;. """"'~_ 
M.i- l:~. 

a 1 

One-way 
constraint 

M· M· ___ 1_ 

1 l:M. 
i ) 

Figure 1: Softassign and softmax. This paper compares these two techniques. 

(3) 

Mai = Softassignai (Q) (4) 

E2 is E2 without the {3, J.l or II terms of (2), therefore no penalty terms are now in­
cluded. The above dynamics are iterated as (3, the inverse temperature, is gradually 
increased. 

These dynamics may be obtained by evaluating the saddle points of the objective 
in (2). Sinkhorn's method finds the saddle points for the Lagrange parameters. 

2.3 Graph Partitioning 

The graph partitioning problem maybe defined in the following way. Given an un­
weighted graph G, find the membership matrix M such that the following objective 
function is minimized. 

A I I 

E3(M) = - I:L:L:GijMaiMaj (5) 
a=1 i=1 j=1 

subject to Va E;=1 Mai = IIA, Vi E:=1 Mai = 1, Vai Mai E to, I} where graph 
G has I nodes which should be equally partitioned into A bins. 

{Gij} is the adjacency matrix of the graph, whose elements must be 0 or 1. M 
is a membership matrix such that Mai = 1 indicates that node i is in bin a. The 
permutation matrix constraint present in TSP is modified to the membership con­
straint. Node i is a member of only bin a and the number of members in each bin 
is fixed at IIA. When the above objective is at a minimum, then graph G will be 
partitioned into A equal sized bins, such that the cutsize is minimum for all possible 
partitionings of G into A equal sized bins. We assume IIA is an integer. 

Then following the treatment for TSP, we derive the following objective: 
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A I I A I 

E4(M,p,v) = - I: I:L: CijMaiMaj - ~ L:L:M;i 
a=l i=l j=l a=l i=l 

1AI A I I A 

+:8 I: I: Mai(lOgMai - 1) + I:Pa(2: Mai - [fA) + 2: Vi (2: Mai -1) (6) 
a=li=l a=l i=l i=l a=l 

which is minimized with a similar algorithm employing the softassign. Note however 
now in the soft assign the columns are normalized to [j A instead of 1. 

8 Experimental Results 

Experiments on Euclidean TSP and graph partitioning were conducted. For each 
problem three different algorithms were run. One used the soft assign described 
above. The second used the Potts glass dynamics employing synchronous update 
as described in [Peterson and Soderberg, 1989]. The third used the Potts glass 
dynamics employing serial update as described in [Peterson and Soderberg, 1989]. 
Originally the intention was to employ just the synchronous updating version of 
the Potts glass dynamics, since that is the dynamics used in the algorithms em­
ploying soft assign and is the method that is massively parallelizable. We believe 
massive parallelism to be such a critical feature of the neural network architecture 
[Rumelhart and McClelland, 1986] that any algorithm that does not have this fea­
ture loses much of the power of the neural network paradigm. Unfortunately the 
synchronous updating algorithms just worked so poorly that we also ran the serial 
versions in order to get a more extensive comparison. Note that the results reported 
in [Peterson and Soderberg, 1989] were all with the serial versions. 

3.1 Euclidean TSP Experiments 

Figure 2 shows the results of the Euclidean TSP experiments. 500 different 100-
city tours from points uniformly generated in the 2D unit square were used as 
input. The asymptotic expected length of an optimal tour for cities distributed 
in the unit square is given by L( n) = J( Vn where n is the number of cities and 
0.765 ~ J( ~ 0.765 +.1 [Lawler et al., 1985]. This gives the interval [7.65,8.05] for 
the 100 city TSP. 95<70 of the tour lengths fall in the interval [8,11] when using the 
soft assign approach. Note the large difference in performance between the soft assign 
and the Potts glass algorithms. The serial Potts glass algorithm ran about 5 times 
slower than the soft assign version. Also as noted previously the serial version is 
not massively parallelizable. The synchronous Potts glass ran about 2 times slower. 
Also note the softassign algorithm is much simpler to implement-fewer parameters 
to tune. 

3.2 Graph Partitioning Experiments 

Figure 3 shows the results of the graph partitioning experiments. 2000 different 
randomly generated 100 node graphs with 10% connectivity were used as input. 
These graphs were partitioned into four bins. The soft assign performs better than 
the Potts glass algorithms, however here the difference is more modest than in the 
TSP experiments. However the serial Potts glass algorithm again ran about 5 times 
slower then the soft assign version and as noted previously the serial version is not 
massively parallelizable. The synchronous Potts glass ran about 2 times slower. 
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Figure 2: 100 City Euclidean TSP. 500 experiments. Left: Softassign .. Middle: 
Softmax (serial update). Right: Softmax (synchronous update). 

Also again note the softassign algorithm was much simpler to implement-fewer 
parameters to tune. 
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Figure 3: 100 node Graph Partitioning, 4 bins. 2000 experiments. Left: Soft­
assign •. Middle: Softmax (serial update). Right: Softmax (synchronous 
update). 

A relatively simple version of graph partitioning was run. It is likely that as the 
number of bins are increased the results on graph partitioning will come to resemble 
more closely the TSP results, since when the number of bins equal the number of 
nodes, the TSP can be considered a special case of graph partitioning (there are 
some additional restrictions). However even in this simple case the softassign has 
clear advantages over the softmax and penalty term. 

4 Conclusion 

For the first time, two classic combinatorial optimization problems, TSP and graph 
partitioning, are solved using a new technique for constraint satisfaction, the soft as­
sign. The softassign, which has recently emerged from the statistical physics/neural 
networks framework, enforces a two-way (assignment) constraint, without penalty 
terms in the energy function . We also show that the softassign can be generalized 
from two-way winner-take-all constraints to multiple membership constraints, which 
are required for graph partitioning. Benchmarks against the Potts glass methods, 
using softmax and a penalty term, clearly demonstrate its advantages in terms 
of accuracy, speed, parallelizability and simplicity of implementation. Within the 
neural network/statistical physics framework, soft assign should be considered the 
technique of choice for enforcing two-way constraints in energy functions. 
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