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Abstract 
This paper describes a neural network based controller for allocating 
capacity in a telecommunications network. This system was proposed in 
order to overcome a "real time" response constraint. Two basic 
architectures are evaluated: 1) a feedforward network-heuristic and; 2) a 
feedforward network-recurrent network. These architectures are 
compared against a linear programming (LP) optimiser as a benchmark. 
This LP optimiser was also used as a teacher to label the data samples 
for the feedforward neural network training algorithm. It is found that 
the systems are able to provide a traffic throughput of 99% and 95%, 
respectively, of the throughput obtained by the linear programming 
solution. Once trained, the neural network based solutions are found in a 
fraction of the time required by the LP optimiser. 

1 Introduction 
Among the many virtues of neural networks are their efficiency, in terms of both execution 
time and required memory for storing a structure, and their practical ability to approximate 
complex functions. A typical drawback is the usually "data hungry" training algorithm. 
However, if training data can be computer generated off line, then this problem may be 
overcome. In many applications the algorithm used to generate the solution may be 
impractical to implement in real time. In such cases a neural network substitute can 
become crucial for the feasibility of the project. This paper presents preliminary results for 
a non-linear optimization problem using a neural network. The application in question is 
that of capacity allocation in an optical communications network. The work in this area is 
continuing and so far we have only explored a few possibilities. 

2 Application: Bandwidth Allocation in SDH Networks 
Synchronous Digital Hierarchy (SDH) is a new standard for digital transmission over 
optical fibres [3] adopted for Australia and Europe equivalent to the SONET 
(Synchronous Optical NETwork) standard in North America. The architecture of the 
particular SDH network researched in this paper is shown in Figure 1 (a). 

1) Nodes at the periphery of the SDH network are switches that handle individual 
calls. 
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2) Each switch concentrates traffic for another switch into a number of streams. 

3) Each stream is then transferred to a Digital Cross-Connect (DXC) for switching and 
transmission to its destination by allocating to it one of several alternative virtual 
paths. 

The task at hand is the dynamic allocation of capacities to these virtual paths in order to 
maximize SDH network throughput. 

This is a non-linear optimization task since the virtual path capacities and the constraints, 
i.e. the physical limit on capacity of links between DXC's, are quantized, and the objective 
function (Erlang blocking) depends in a highly non-linear fashion on the allocated 
capacities and demands. Such tasks can be solved 'optimally' with the use of classical 
linear programming techniques [5], but such an approach is time-consuming - for large 
SDH networks the task could even require hours to complete. 

One of the major features of an SDH network is that it can be remotely reconfigured using 
software controls. Reconfiguration of the SDH network can become necessary when 
traffic demands vary, or when failures occur in the DXC's or the links connecting them. 
Reconfiguration in the case of failure must be extremely fast, with a need for restoration 
times under 60 ms [1]. 

o DXC (Digital ® Switch 
Cross-Connect) 

Figure 1 
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(a) Example of an Inter-City SDH/SONET Network Topology used in experiments. 
(b) Example of an architecture of the mask perceptron generated in experiments. 

In our particular case, there are three virtual paths allocated between any pair of switches, 
each using a different set of links between DXC's of the SDH network. Calls from one 
switch to another can be sent along any of the virtual paths, leading to 126 paths in total (7 
switches to 6 other switches, each with 3 paths). 

The path capacities are normally set to give a predefined throughput. This is known as the 
"steady state". If links in the SDH network become partially damaged or completely cut, 
the operation of the SDH network moves away from the steady state and the path 
capacities must be reconfigured to satisfy the traffic demands subject to the following 
constraints: 

(i) Capacities have integer values (between 0 and 64 with each unit corresponding to a 
2 Mb/s stream, or 30 Erlangs), 

(ii) The total capacity of all virtual paths through anyone link of the SDH network 
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cannot exceed the physical capacity of that link. 

The neural network training data consisted of 13 link capacities and 42 traffic demand 
values, representing situations in which the operation of one or more links is degraded 
(completely or partially). The output data consisted of 126 integer values representing the 
difference between the steady state path capacities and the final allocated path capacities. 

3 Previous Work 
The problem of optimal SDH network reconfiguration has been researched already. In 
particular Gopal et. al. proposed a heuristic greedy search algorithm [4] to solve this non­
linear integer programming problem. Herzberg in [5] reformulated this non-linear integer 
optimization problem as a linear programming (LP) task, Herzberg and Bye in [6] 
investigated application of a simplex algorithm to solve the LP problem, whilst Bye [2] 
considered an application of a Hopfield neural network for this task, and finally Leckie [8] 
used another set of AI inspired heuristics to solve the optimization task. 

All of these approaches have practical deficiencies; the linear programming is slow, while 
the heuristic approaches are relatively inaccurate and the Hopfield neural network method 
(simulated on a serial computer) suffers from both problems. 

In a previous paper Campbell et al. [10] investigated application of a mask perceptron to 
the problem of reconfiguration for a "toy" SDH network. The work presented here 
expands on the work in that paper, with the idea of using a second stage mask perceptron 
in a recurrent mode to reduce link violationslunderutilizations. 

4 The Neural Controller Architecture 
Instead of using the neural network to solve the optimization task, e.g. as a substitute for 
the simplex algorithm, it is taught to replicate the optimal LP solution provided by it. 

We decided to use a two stage approach in our experiments. For the first stage we 
developed a feedforward network able to produce an approximate solution. More 
precisely, we used a collection of 2000 random examples for which the linear 
programming solution of capacity allocations had been pre-computed to develop a 
feedforward neural network able to approximate these solutions. 

Then, for a new example, such an "approximate" neural network solution was rounded to 
the nearest integer, to satisfy constraint (i), and used to seed the second stage providing 
refinement and enforcement of constraint (ii). 

For the second stage experiments we initially used a heuristic module based on the Gopal 
et al. approach [4]. The heuristic firstly reduces the capacities assigned to all paths which 
cause a physical capacity violation on any links, then subsequently increases the capacities 
assigned to paths across links which are being under-utilized. 

We also investigated an approach for the second stage which uses another feedforward 
neural network. The teaching signal for the second stage neural network is the difference 
between the outputs from the first stage neural network alone and the combined first stage 
neural networkiheuristic solution. This time the input data consisted of 13 link usage 
values (either a link violation or underutilization) and 42 values representing the amount 
of traffic lost per path for the current capacity allocations. The second stage neural 
network had 126 outputs representing the correction to the first stage neural network's 
outputs. 

The second stage neural network is run in a recurrent mode, adjusting by small steps the 
currently allocated link capacities, thereby attempting to iteratively move closer to the 
combined neural-heuristic solution by removing the link violations and under-utilizations 
left behind by the first stage network. 

The setup used during simulation is shown in Figure 2. For each particular instance tested 
the network was initialised with the solution from the first stage neural network. The 
offered traffic (demand) and the available maximum link capacities were used to 
determine the extent of any link violations or underutilizations as well as the amount of 
lost traffic (demand satisfaction). This data formed the initial input to the second stage 
network. The outputs of the neural network were then used to check the quality of the 
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solution, and iteration continued until either no link violations occurred or a preset 
maximum number of iterations had been performed. 
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Figure 2. Recurrent Network used for second stage experiments. 

solution (t) 

When computing the constraint satisfaction the outputs of the neural network where 
combined and rounded to give integer link violations/under-utilizations. This means that 
in many cases small corrections made by the network are discarded and no further 
improvement is possible. In order to overcome this we introduced a scheme whereby 
errors (link violations/under-utilizations) are occasionally amplified to allow the network a 
chance of removing them. This scheme works as follows : 

1) an instance is iterated until it has either no link violations or until 10 iterations have 
been performed; 

2) if any link violations are still present then the size of the errors are multiplied by an 
amplification factor (> 1); 

3) a further maximum of 10 iterations are performed; 

4) if subsequently link violations persist then the amplification factor is increased; 

the procedure repeats until either all link violations are removed or the amplification factor 
reaches some fixed value. 

S Description of Neural Networks Generated 
The first stage feedforward neural network is a mask perceptron [7], c.f. Figure 1 (b). Each 
input is passed through a number of arbitrarily chosen binary threshold units. There were a 
total of 738 thresholds for the 55 inputs. The task for the mask perceptron training 
algorithm [7] is to select a set of useful thresholds and hidden units out of thousands of 
possibilities and then to set weights to minimize the mean-square-error on the training set. 

The mask perceptron training algorithm automatically selected 67 of these units for direct 
connection to the output units and a further 110 hidden units ("AND" gates) whose 
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outputs are again connected to the neural network outputs, giving 22,302 connections in 
all. 

Such neural networks are very rapid to simulate since the only operations required are 
comparison and additions. 

For the recurrent network used in the second stage we also used a mask perceptron. The 
training algori thIn used for the recurrent network was the same as for the first stage, in 
particular note that no gradual adaptation was employed. The inputs to the network are 
passed through 589 arbitrarily chosen binary threshold units. Of these 35 were selected by 
the training algorithm for direct connection to the output units via 4410 weighted links. 

6 Results 
The results are presented in Table 1 and Figure 3. The values in the table represent the 
traffic throughput of the SDH network, for the respective methods, as a percentage of the 
throughput determined by the LP solution. Both the neural networks were trained using 
2000 instances and tested against a different set of 2000 instances. However for the 
recurrent network approximately 20% of these cases still had link violations after 
simulation so the values in Table 1 are for the 80% of valid solutions obtained from either 
the training or test set. 

Solution type Training Test 

Feedforward Net/Heuristic 99.08% 98.90%, 
Feedforward Net/Recurrent Net 94.93% (*) 94.76%(*) 
Gopal-S 96.38% 96.20% 
Gopal-O 85.63% 85.43% 

(*) these numbers are for the 1635 training and 1608 test instances (out of 2000) for which the 
recurrent network achieved a solution with no link violations after simulation as described in 
Section 3. 

Table 1. Efficiency of solutions measured by average fraction of the ' optimal' 
throughput of the LP solution 

As a comparison we implemented two solely heuristic algorithms. We refer to these as 
Gopal-S and Gopal-O. Both employ the same scheme described earlier for the Gopal et al. 
heuristic. The difference between the two is that Gopal-S uses the steady state solution as 
an initial starting point to determine virtual path capacities for a degraded network, 
whereas Gopal-O starts from a point where all path capacities are initially set to zero. 

Referring to Figure 3, link capacity ratio denotes the total link capacity of the degraded 
SDH network relative to the total link capacity of the steady state SDH network. A low 
value of link capacity ratio indicates a heavily degraded network. The traffic throughput 
ratio denotes the ratio between the throughput obtained by the method in question, and the 
throughput of the steady state solution. 

Each dot in the graphs in Figure 3 represents one of the 2000 test set cases. It is clear from 
the figure that the neural network/heuristic approach is able to find better solutions for 
heavily degraded networks than each of the other approaches. Overall the clustering of 
dots for the neural network/heuristic combination is tighter (in the y-direction) and closer 
to 1.00 than for any of the other methods. The results for the recurrent network are very 
encouraging being qUalitatively quite close to those for the Gopal-S algorithm. 

All experiments were run on a SPARCStation 20. The neural network training took a few 
minutes. During simulation the neural network took an average of 9 ms per test case with 
a further 36.5 ms for the heuristic, for a total of 45.5 ms. On average the Gopal-S 
algorithm required 55.3 ms and the Gopal-O algorithm required 43.7 ms per test case. The 
recurrent network solution required an average of 55.9 ms per test case. The optimal 
solutions calculated using the linear programming algorithm took between 2 and 60 
seconds per case on a SPARCStation 10. 
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Figure 3. Experimental results for the Inter-City SDH network (Fig. 1) on the 
independent test set of 2000 random cases. On the x axis we have the ratio 
between the total link capacity of the degraded SDH network and the steady state 
SDH network. On the y axis we have the ratio between the throughput obtained 
by the method in question, and the throughput of the steady state solution. 

Fig 3. (a) shows results for the neural network combined with the heuristic 
second stage. Fig 3. (b) shows results for the recurrent neural network second 
stage. Fig 3. (c) shows results for the heuristic only, initialised by the steady state 
(Gopal-S) and Fig 3. (d) has the results for the heuristic initialised by zero 
(Gopal-O). 

7 Discussion and Conclusions 
The combined neural network/heuristic approach performs very well across the whole 
range of degrees of SDH network degradation tested. The results obtained in this paper are 
consistent with those found in [10]. The average accuracy of -99% and fast solution 
generation times « ffJ ms) highlight this approach as a possible candidate for 
implementation in a real system, especially when one considers the easily achievable 
speed increase available from parallelizing the neural network. The mask perceptron used 
in these experiments is well suited for simulation on a DSP (or other hardware) : the 
operations required are only comparisons, calculation of logical "AND" and the 
summation of synaptic weights (no multiplications or any non-linear transfonnations are 
required). 

The interesting thing to note is the relatively good perfonnance of the recurrent network, 
namely that it is able to handle over 80% of cases achieving very good perfonnance when 
compared against the neural network/heuristic solution (95% of the quality of the teacher). 
One thing to bear in mind is that the heuristic approach is highly tuned to producing a 
solution which satisfies the constraints, changing the capacity of one link at a time until 
the desired goal is achieved. On the other hand the recurrent network is generic and does 
not target the constraints in such a specific manner, making quite crude global changes in 
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one hit, and yet is still able to achieve a reasonable level of performance. While the speed 
for the recurrent network was lower on average than for the heuristic solution in our 
experiments, this is not a major problem since many improvements are still possible and 
the results reported here are only preliminary, but serve to show what is possible. It is 
planned to continue the SOH network experiment in the future; with more investigation on 
the recurrent network for the second stage and also more complex SDH architectures. 
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