
Experiments with Neural Networks for Real
Time Implementation of Control

P. K. Campbell, M. Dale, H. L. Ferra and A. Kowalczyk

Telstra Research Laboratories
770 Blackburn Road Clayton, Vic. 3168, Australia

{p.campbell, m.dale, h.ferra, a.kowalczyk}@trl.oz.au

Abstract
This paper describes a neural network based controller for allocating
capacity in a telecommunications network. This system was proposed in
order to overcome a "real time" response constraint. Two basic
architectures are evaluated: 1) a feedforward network-heuristic and; 2) a
feedforward network-recurrent network. These architectures are
compared against a linear programming (LP) optimiser as a benchmark.
This LP optimiser was also used as a teacher to label the data samples
for the feedforward neural network training algorithm. It is found that
the systems are able to provide a traffic throughput of 99% and 95%,
respectively, of the throughput obtained by the linear programming
solution. Once trained, the neural network based solutions are found in a
fraction of the time required by the LP optimiser.

1 Introduction
Among the many virtues of neural networks are their efficiency, in terms of both execution
time and required memory for storing a structure, and their practical ability to approximate
complex functions. A typical drawback is the usually "data hungry" training algorithm.
However, if training data can be computer generated off line, then this problem may be
overcome. In many applications the algorithm used to generate the solution may be
impractical to implement in real time. In such cases a neural network substitute can
become crucial for the feasibility of the project. This paper presents preliminary results for
a non-linear optimization problem using a neural network. The application in question is
that of capacity allocation in an optical communications network. The work in this area is
continuing and so far we have only explored a few possibilities.

2 Application: Bandwidth Allocation in SDH Networks
Synchronous Digital Hierarchy (SDH) is a new standard for digital transmission over
optical fibres [3] adopted for Australia and Europe equivalent to the SONET
(Synchronous Optical NETwork) standard in North America. The architecture of the
particular SDH network researched in this paper is shown in Figure 1 (a).

1) Nodes at the periphery of the SDH network are switches that handle individual
calls.

974 P. CAMPBELL, M. DALE, H. L. FERRA, A. KOWALCZYK

2) Each switch concentrates traffic for another switch into a number of streams.

3) Each stream is then transferred to a Digital Cross-Connect (DXC) for switching and
transmission to its destination by allocating to it one of several alternative virtual
paths.

The task at hand is the dynamic allocation of capacities to these virtual paths in order to
maximize SDH network throughput.

This is a non-linear optimization task since the virtual path capacities and the constraints,
i.e. the physical limit on capacity of links between DXC's, are quantized, and the objective
function (Erlang blocking) depends in a highly non-linear fashion on the allocated
capacities and demands. Such tasks can be solved 'optimally' with the use of classical
linear programming techniques [5], but such an approach is time-consuming - for large
SDH networks the task could even require hours to complete.

One of the major features of an SDH network is that it can be remotely reconfigured using
software controls. Reconfiguration of the SDH network can become necessary when
traffic demands vary, or when failures occur in the DXC's or the links connecting them.
Reconfiguration in the case of failure must be extremely fast, with a need for restoration
times under 60 ms [1].

o DXC (Digital ® Switch
Cross-Connect)

Figure 1

(b)

link offered
capacities traffic

output: path
capacities

synaptic weights
(22302)

hidden units:
'AND' gates
(l10)

thresholds
(738,67 used)

input

(a) Example of an Inter-City SDH/SONET Network Topology used in experiments.
(b) Example of an architecture of the mask perceptron generated in experiments.

In our particular case, there are three virtual paths allocated between any pair of switches,
each using a different set of links between DXC's of the SDH network. Calls from one
switch to another can be sent along any of the virtual paths, leading to 126 paths in total (7
switches to 6 other switches, each with 3 paths).

The path capacities are normally set to give a predefined throughput. This is known as the
"steady state". If links in the SDH network become partially damaged or completely cut,
the operation of the SDH network moves away from the steady state and the path
capacities must be reconfigured to satisfy the traffic demands subject to the following
constraints:

(i) Capacities have integer values (between 0 and 64 with each unit corresponding to a
2 Mb/s stream, or 30 Erlangs),

(ii) The total capacity of all virtual paths through anyone link of the SDH network

Experiments with Neural Networks for Real Time Implementation of Control 975

cannot exceed the physical capacity of that link.

The neural network training data consisted of 13 link capacities and 42 traffic demand
values, representing situations in which the operation of one or more links is degraded
(completely or partially). The output data consisted of 126 integer values representing the
difference between the steady state path capacities and the final allocated path capacities.

3 Previous Work
The problem of optimal SDH network reconfiguration has been researched already. In
particular Gopal et. al. proposed a heuristic greedy search algorithm [4] to solve this non­
linear integer programming problem. Herzberg in [5] reformulated this non-linear integer
optimization problem as a linear programming (LP) task, Herzberg and Bye in [6]
investigated application of a simplex algorithm to solve the LP problem, whilst Bye [2]
considered an application of a Hopfield neural network for this task, and finally Leckie [8]
used another set of AI inspired heuristics to solve the optimization task.

All of these approaches have practical deficiencies; the linear programming is slow, while
the heuristic approaches are relatively inaccurate and the Hopfield neural network method
(simulated on a serial computer) suffers from both problems.

In a previous paper Campbell et al. [10] investigated application of a mask perceptron to
the problem of reconfiguration for a "toy" SDH network. The work presented here
expands on the work in that paper, with the idea of using a second stage mask perceptron
in a recurrent mode to reduce link violationslunderutilizations.

4 The Neural Controller Architecture
Instead of using the neural network to solve the optimization task, e.g. as a substitute for
the simplex algorithm, it is taught to replicate the optimal LP solution provided by it.

We decided to use a two stage approach in our experiments. For the first stage we
developed a feedforward network able to produce an approximate solution. More
precisely, we used a collection of 2000 random examples for which the linear
programming solution of capacity allocations had been pre-computed to develop a
feedforward neural network able to approximate these solutions.

Then, for a new example, such an "approximate" neural network solution was rounded to
the nearest integer, to satisfy constraint (i), and used to seed the second stage providing
refinement and enforcement of constraint (ii).

For the second stage experiments we initially used a heuristic module based on the Gopal
et al. approach [4]. The heuristic firstly reduces the capacities assigned to all paths which
cause a physical capacity violation on any links, then subsequently increases the capacities
assigned to paths across links which are being under-utilized.

We also investigated an approach for the second stage which uses another feedforward
neural network. The teaching signal for the second stage neural network is the difference
between the outputs from the first stage neural network alone and the combined first stage
neural networkiheuristic solution. This time the input data consisted of 13 link usage
values (either a link violation or underutilization) and 42 values representing the amount
of traffic lost per path for the current capacity allocations. The second stage neural
network had 126 outputs representing the correction to the first stage neural network's
outputs.

The second stage neural network is run in a recurrent mode, adjusting by small steps the
currently allocated link capacities, thereby attempting to iteratively move closer to the
combined neural-heuristic solution by removing the link violations and under-utilizations
left behind by the first stage network.

The setup used during simulation is shown in Figure 2. For each particular instance tested
the network was initialised with the solution from the first stage neural network. The
offered traffic (demand) and the available maximum link capacities were used to
determine the extent of any link violations or underutilizations as well as the amount of
lost traffic (demand satisfaction). This data formed the initial input to the second stage
network. The outputs of the neural network were then used to check the quality of the

976 P. CAMPBELL, M. DALE, H. L. FERRA, A. KOWALCZYK

solution, and iteration continued until either no link violations occurred or a preset
maximum number of iterations had been performed.

offered traffic

link capacities
computation of
constraint -demand
satisfaction

[........ ~ -..... -----~(+)
! solution (t-l)

!

I
!

initialization:
solution (0)
from stage 1

correction (t)

demand satisfaction (t-l

42 inputs

link capacities
violation!underutilization (t-l)

13 inputs

Figure 2. Recurrent Network used for second stage experiments.

solution (t)

When computing the constraint satisfaction the outputs of the neural network where
combined and rounded to give integer link violations/under-utilizations. This means that
in many cases small corrections made by the network are discarded and no further
improvement is possible. In order to overcome this we introduced a scheme whereby
errors (link violations/under-utilizations) are occasionally amplified to allow the network a
chance of removing them. This scheme works as follows :

1) an instance is iterated until it has either no link violations or until 10 iterations have
been performed;

2) if any link violations are still present then the size of the errors are multiplied by an
amplification factor (> 1);

3) a further maximum of 10 iterations are performed;

4) if subsequently link violations persist then the amplification factor is increased;

the procedure repeats until either all link violations are removed or the amplification factor
reaches some fixed value.

S Description of Neural Networks Generated
The first stage feedforward neural network is a mask perceptron [7], c.f. Figure 1 (b). Each
input is passed through a number of arbitrarily chosen binary threshold units. There were a
total of 738 thresholds for the 55 inputs. The task for the mask perceptron training
algorithm [7] is to select a set of useful thresholds and hidden units out of thousands of
possibilities and then to set weights to minimize the mean-square-error on the training set.

The mask perceptron training algorithm automatically selected 67 of these units for direct
connection to the output units and a further 110 hidden units ("AND" gates) whose

Experiments with Neural Networks for Real Time Implementation of Control 977

outputs are again connected to the neural network outputs, giving 22,302 connections in
all.

Such neural networks are very rapid to simulate since the only operations required are
comparison and additions.

For the recurrent network used in the second stage we also used a mask perceptron. The
training algori thIn used for the recurrent network was the same as for the first stage, in
particular note that no gradual adaptation was employed. The inputs to the network are
passed through 589 arbitrarily chosen binary threshold units. Of these 35 were selected by
the training algorithm for direct connection to the output units via 4410 weighted links.

6 Results
The results are presented in Table 1 and Figure 3. The values in the table represent the
traffic throughput of the SDH network, for the respective methods, as a percentage of the
throughput determined by the LP solution. Both the neural networks were trained using
2000 instances and tested against a different set of 2000 instances. However for the
recurrent network approximately 20% of these cases still had link violations after
simulation so the values in Table 1 are for the 80% of valid solutions obtained from either
the training or test set.

Solution type Training Test

Feedforward Net/Heuristic 99.08% 98.90%,
Feedforward Net/Recurrent Net 94.93% (*) 94.76%(*)
Gopal-S 96.38% 96.20%
Gopal-O 85.63% 85.43%

(*) these numbers are for the 1635 training and 1608 test instances (out of 2000) for which the
recurrent network achieved a solution with no link violations after simulation as described in
Section 3.

Table 1. Efficiency of solutions measured by average fraction of the ' optimal'
throughput of the LP solution

As a comparison we implemented two solely heuristic algorithms. We refer to these as
Gopal-S and Gopal-O. Both employ the same scheme described earlier for the Gopal et al.
heuristic. The difference between the two is that Gopal-S uses the steady state solution as
an initial starting point to determine virtual path capacities for a degraded network,
whereas Gopal-O starts from a point where all path capacities are initially set to zero.

Referring to Figure 3, link capacity ratio denotes the total link capacity of the degraded
SDH network relative to the total link capacity of the steady state SDH network. A low
value of link capacity ratio indicates a heavily degraded network. The traffic throughput
ratio denotes the ratio between the throughput obtained by the method in question, and the
throughput of the steady state solution.

Each dot in the graphs in Figure 3 represents one of the 2000 test set cases. It is clear from
the figure that the neural network/heuristic approach is able to find better solutions for
heavily degraded networks than each of the other approaches. Overall the clustering of
dots for the neural network/heuristic combination is tighter (in the y-direction) and closer
to 1.00 than for any of the other methods. The results for the recurrent network are very
encouraging being qUalitatively quite close to those for the Gopal-S algorithm.

All experiments were run on a SPARCStation 20. The neural network training took a few
minutes. During simulation the neural network took an average of 9 ms per test case with
a further 36.5 ms for the heuristic, for a total of 45.5 ms. On average the Gopal-S
algorithm required 55.3 ms and the Gopal-O algorithm required 43.7 ms per test case. The
recurrent network solution required an average of 55.9 ms per test case. The optimal
solutions calculated using the linear programming algorithm took between 2 and 60
seconds per case on a SPARCStation 10.

978 P. CAMPBELL, M. DALE, H. L. FERRA, A. KOWALCZYK

Neural Network/Heuristic Recurrent Neural Network
1.00

.2
~ 0.95

8. 0.90
.r:
0>

is 0.85 .c
t-
.!.! 0 .80
~
~ 0.75

0.70 0 .50 0.60 0 .10 0.80 0.90 1.00

link Capacity Ratio

1.00

.2
ra 0 .95
cr
~ 0.90
.r:
0>

6 0.85 .c
t-
,g 0 .80
~
~ 0.75

Gopal-S

· · ····:····:· · :,,~i~ffI~
.- . -,. " " - -' - "~':' ~ -... --- -.. . .

0.70 0.50 0.60 0.70 0.80 0 .90 1.00

link Capacity Ratio

•• , _ ._0 •• _ • •• • • • •• : • • •• :.' ••• :.~' •• : • •••• :. '0"" _ •• • • • _ ••••••••

0.70 0.50 0.60 0 .70 0 .80 0.90 1.00
Link Capacity Ratio

1.00

.2
r.; 0.95
cr
~ 0.90
.r:
0>

5 0.85
.c
t-
. ~ 0.80
~
~ 0.75

Gopal-O

0.70 0.50 0.60 0.70 0.80 0 .90 100
Link Capacily Ratio

Figure 3. Experimental results for the Inter-City SDH network (Fig. 1) on the
independent test set of 2000 random cases. On the x axis we have the ratio
between the total link capacity of the degraded SDH network and the steady state
SDH network. On the y axis we have the ratio between the throughput obtained
by the method in question, and the throughput of the steady state solution.

Fig 3. (a) shows results for the neural network combined with the heuristic
second stage. Fig 3. (b) shows results for the recurrent neural network second
stage. Fig 3. (c) shows results for the heuristic only, initialised by the steady state
(Gopal-S) and Fig 3. (d) has the results for the heuristic initialised by zero
(Gopal-O).

7 Discussion and Conclusions
The combined neural network/heuristic approach performs very well across the whole
range of degrees of SDH network degradation tested. The results obtained in this paper are
consistent with those found in [10]. The average accuracy of -99% and fast solution
generation times « ffJ ms) highlight this approach as a possible candidate for
implementation in a real system, especially when one considers the easily achievable
speed increase available from parallelizing the neural network. The mask perceptron used
in these experiments is well suited for simulation on a DSP (or other hardware) : the
operations required are only comparisons, calculation of logical "AND" and the
summation of synaptic weights (no multiplications or any non-linear transfonnations are
required).

The interesting thing to note is the relatively good perfonnance of the recurrent network,
namely that it is able to handle over 80% of cases achieving very good perfonnance when
compared against the neural network/heuristic solution (95% of the quality of the teacher).
One thing to bear in mind is that the heuristic approach is highly tuned to producing a
solution which satisfies the constraints, changing the capacity of one link at a time until
the desired goal is achieved. On the other hand the recurrent network is generic and does
not target the constraints in such a specific manner, making quite crude global changes in

Experiments with Neural Networks for Real Time Implementation of Control 979

one hit, and yet is still able to achieve a reasonable level of performance. While the speed
for the recurrent network was lower on average than for the heuristic solution in our
experiments, this is not a major problem since many improvements are still possible and
the results reported here are only preliminary, but serve to show what is possible. It is
planned to continue the SOH network experiment in the future; with more investigation on
the recurrent network for the second stage and also more complex SDH architectures.

Acknowledgments
The research and development reported here has the active support of various sections and
individuals within the Telstra Research Laboratories (TRL), especially Dr. C. Leckie, Mr.
P. Sember, Dr. M. Herzberg, Mr. A. Herschtal and Dr. L. Campbell. The permission of the
Managing Director, Research and Information Technology, Telstra, to publish this paper is
acknowledged.

The research and development reported here has the active support of various sections and
individuals within the Telstra Research Laboratories (TRL), especially Dr. C. Leckie and
Mr. P. Sember who were responsible for the creation and trialling of the programs
designed to produce the testing and training data.

The SOH application was possible due to co-operation of a number of our colleagues in
TRL, in particular Dr. L. Campbell (who suggested this particular application), Dr. M.
Herzberg and Mr. A. Herschtal.

The permission of the Managing Director, Research and Information Technology, Telstra,
to publish this paper is acknowledged.

References
[1] E. Booker, Cross-connect at a Crossroads, Telephony, Vol. 215, 1988, pp. 63-65.
[2] S. Bye, A Connectionist Approach to SDH Bandwidth Management, Proceedings

of the 19th International Conference on Artificial Neural Networks (ICANN-93),
Brighton Conference Centre, UK, 1993, pp. 286-290.

[3] R. Gillan, Advanced Network Architectures Exploiting the Synchronous Digital
Hierarchy, Telecommunications Journal of Australia 39, 1989, pp. 39-42.

[4] G. Gopal, C. Kim and A. Weinrib, Algorithms for Reconfigurable Networks,
Proceedings of the 13th International Teletraffic Congress (ITC-13), Copenhagen,
Denmark, 1991, pp. 341-347.

[5] M. Herzberg, Network Bandwidth Management - A New Direction in Network
Management, Proceedings of the 6th Australian Teletraffic Research Seminar,
Wollongong, Australia, pp. 218-225.

[6] M. Herzberg and S. Bye, Bandwidth Management in Reconfigurable Networks,
Australian Telecommunications Research 27, 1993, pp 57-70.

[7] A. Kowalczyk and H.L. Ferra, Developing Higher Order Networks with
Empirically Selected Units, IEEE Transactions on Neural Networks, pp. 698-711,
1994.

[8] C. Leckie, A Connectionist Approach to Telecommunication Network
Optimisation, in Complex Systems: Mechanism of Adaptation, R.J. Stonier and
X.H. Yu, eds., lOS Press, Amsterdam, 1994.

[9] M. Schwartz, Telecommunications Networks, Addison-Wesley, Readings,
Massachusetts, 1987.

[10] p. Campbell, H.L. Ferra, A. Kowalczyk, C. Leckie and P. Sember, Neural Networks
in Real Time Decision Making, Proceedings of the International Workshop on
Applications of Neural Networks to Telecommunications 2 (IWANNT-95), Ed. J
Alspector et. al. Lawrence Erlbaum Associates, New Jersey, 1995, pp. 273-280.

