
A Unified Learning Scheme: 
Bayesian-Kullback Ying-Yang Machine 

Lei Xu 
1. Computer Science Dept., The Chinese University of HK, Hong Kong 

2. National Machine Perception Lab, Peking University, Beijing 

Abstract 

A Bayesian-Kullback learning scheme, called Ying-Yang Machine, 
is proposed based on the two complement but equivalent Bayesian 
representations for joint density and their Kullback divergence. 
Not only the scheme unifies existing major supervised and unsu­
pervised learnings, including the classical maximum likelihood or 
least square learning, the maximum information preservation, the 
EM & em algorithm and information geometry, the recent popular 
Helmholtz machine, as well as other learning methods with new 
variants and new results; but also the scheme provides a number 
of new learning models. 

1 INTRODUCTION 

Many different learning models have been developed in the literature. We may 
come to an age of searching a unified scheme for them. With a unified scheme, 
we may understand deeply the existing models and their relationships, which may 
cause cross-fertilization on them to obtain new results and variants; We may also be 
guided to develop new learning models, after we get better understanding on which 
cases we have already studied or missed, which deserve to be further explored. 

Recently, a Baysian-Kullback scheme, called the YING-YANG Machine, has been 
proposed as such an effort(Xu, 1995a). It bases on the Kullback divergence and two 
complement but equivalent Baysian representations for the joint distribution of the 
input space and the representation space, instead of merely using Kullback diver­
gence for matching un-structuralized joint densities in information geometry type 
learnings (Amari, 1995a&b; Byrne, 1992; Csiszar, 1975). The two representations 
consist of four different components. The different combinations of choices of each 
component lead the YING-YANG Machine into different learning models. Thus, 
it acts as a general learning scheme for unifying the existing major unsupervised 
and supervised learnings. As shown in Xu(1995a), its one special case reduces to 
the EM algorithm (Dempster et aI, 1977; Hathaway, 1986; Neal & Hinton , 1993) 
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and the closely related Information Geometry theory and the em algorithm (Amari, 
1995a&b), to MDL autoencoder with a "bits-back" argument by Hinton & Zemel 
(1994) and its alternative equivalent form that minimizes the bits of uncoded resid­
ual errors and the unused bits in the transmission channel's capacity (Xu, 1995d), 
as well as to Multisets modeling learning (Xu, 1995e)- a unified learning framework 
for clustering, PCA-type learnings and self-organizing map. It other special case 
reduces to maximum information preservation (Linsker, 1989; Atick & Redlich, 
1990; Bell & Sejnowski, 1995). More interestingly its another special case reduces 
to Helmholtz machine (Dayan et al,1995 ; Hinton, 1995) with new understandings. 
Moreover , the YING-YANG machine includes also maximum likelihood or least 
square learning. 

Furthermore, the YING- YANG Machine has also been extended to temporal pat­
terns with a number of new models for signal modeling. Some of them are the 
extensions of Helmholtz machine or maximum information preservation learning to 
temporal processing. Some of them include and extend the Hidden Markov Model 
(HMM), AMAR and AR models (Xu, 1995b). In addition, it has also been shown in 
Xu(1995a&c, 1996a) that one special case of the YING-YANG machine can provide 
us three variants for clustering or VQ, particularly with criteria and an automatic 
procedure developed for solving how to select the number of clusters in clustering 
analysis or Gaussian mixtures - a classical problem that remains open for decades . 

In this paper, we present a deep and systematical further study. Section 2 re­
describes the unified scheme on a more precise and systematical basis via discussing 
the possible marital status of the two Bayesian representations for joint density. 
Section 3 summarizes and explains those existing models under the unified scheme, 
particularly we have clarified some confusion made in the previous papers (Xu, 
1995a&b) on maximum information preservation learning. Section 4 proposed and 
summarizes a number of possible new models suggested by the unified scheme. 

2 BAYESIAN-KULLBACK YING-YANG MACHINE 

As argued in Xu (1995a), unsupervised and supervised learning problems can be 
summarized into the problem of estimating joint density P(x, y) of patterns in 
the input space X and the representation space Y, as shown in Fig.I. Under the 
Bayesian framework, we have two representations for P(x, y). One is PM! (x , y) = 
PM! (ylx)PM! (x), implemented by a model Ml called YANG/(male) part since it 
performs the task of transferring a pattern/(a real body) into a code/(a seed). The 
other is PM2(X, y) = PM2(xly)PM2(Y), implemented by a model M2 called YING 
part since it performs the task of generating a pattern/(a real body) from a code/(a 
seed). They are complement to each other and together implement an entire circle 
x -t y -t x. This compliments to the ancient chinese YING-YANG philosophy. 

Here we have four components PM! (x), PM! (ylx), PM2 (xly) and PM2(Y). The 
PM! (x) can be fixed at some density estimate on input data, e.g ., we have at least 
two choices-Parzen window estimate Ph (x) or empirical estimate Po (x) : 

Ph(X) = N~d I:~l K( X~XI), Po(x) = limh ... O Ph(X) = -b I:~l 8(x - Xi). (1) 

For PM!(ylx), PM2 (xly), each can have three choices: (1) from a parametric fam­
ily specified by model Ml or M2 ; (2) free of model with PM!(ylx) = P(ylx) or 
PM2(xly) = P(xly); (3) broken channel PM! (ylx) = PM!(y) or PM2(xly) = PM2 (X) . 
Finally, PM2(y) with its y consistent to PM! (ylx) can also being from a parametric 
family or free of model. Any combinations of the choices of the four components 
forms a potential YING-YANG pair. We at least have 2 x 3 x 3 x 2 = 36 pairs. 

A YING-YANG pair has four types of marital status: (a) marry, i .e., YING and 
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Figure 1 The joint spaces X, Y and the YING-YANG Machine 
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YANG match each other; (b) divorce, i.e., YING and YANG go away from each 
other; (c) YING chases YANG, YANG escapes; (d) YANG chases YING, but YING 
escapes. The four types can be described by a combination of minimization (chas­
ing) and maximization (escaping) on one of the two Kullback divergences below: 

, f ( \ PM) (ylx) PM) (x) ( R.(MI,M2) = PMlyx)PMl(x)logp (I)P ()dxdy 2a) 
x,y M2 x Y M2 Y 

( ) f ( \) () PM2 (xly) P M2 (y) ( ) 
K M2,MI = PM2 X Y PM2 Y log P (I)P ()dxdy 2b x,y Ml Y x Ml x 

We can replace K(MI' M2) by K(M2, MJ) in the table. The 2nd & 3rd columns are for 
(c) (d) respectively, each has two cases depending on who starts the act and the two 
are usually not equivalent. Their results are undefined depending on initial condition for 
M I,M2, except of two special cases: (i) Free PMl(Y\X) and parametric PM2(X\Y), with 
minM2 maxMl K being the same as (b) with broken PM l (y\x), and with maXM2 minMl K 
defined but useless. (ii) Free PM2 (X\Y) and parametric PMl(y\X), with minMl maXM2 K 
the same as case (a) with broken PM2 (xly), with minMl maxM2 K defined but useless. 

Therefore, we will focus on the status marry and divorce. Even so, not all of the 
above mentioned 2 x 3 x 3 x 2 = 36 YING-YANG pairs provide sensible learning 
models although minMl ,M2 K and maxMl ,M2 K are always well defined. Fortunately, 
a quite number of them indeed lead us to useful learning models, as will be shown 
in the sequent sections. 

We can implement minMl ,M2 K(Ml, M 2) by the following Alternative Minimization 
(ALTMIN) procedure: 
Step 1 Fix M2 = M21d, to get Mrew = arg M inMl K L( M I, M21d) 
Step 2 Fix MI = Mfld, to get M:;ew = arg MinM2 KL(Mfld, M2) 

The ALTMIN iteration will finally converge to a local minimum of K(MI , M 2 ). We can 
have a similar procedure for maXMl ,M2 K(MI, M2) via replacing Min by Max. 

Since the above scheme bases on the two complement YING and YANG Bayesian 
representations and their Kullback divergence for their marital status, we call it 
Bayesian-Kullback YING- YANG learning scheme. Furthermore, under this scheme 
we call each obtained YING-YANG pair that is sensible for learning purpose as a 
Bayesian-Kullback YING- YANG Machine or YING- YANG machine shortly. 

3 UNIFIED EXISTING LEARNINGS 

Let PMl(X) = Po(x) by eq.(l) and put it into eq.(2), through certain mathematics 
we can get K(M1 , M2) = hMl - haMl - QMl ,2 + D with D independent of M 1 , M2 
and hMll haMl' QMl ,2 given by Eqs.(El)(E2)&(E4) in Tab.2 respectively. The larger 
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is the hM l , the more discriminative or separable are the representations in Y for the 
input data set. The larger is the haMl' the more concentrated the representations 
in Y . The larger is the qMl,2' the better PM2(xIY) fits the input data. 

Therefore, minM l ,M2 K(M1, M2) consists of (1) best fitting of PM2 (xIY) on input 
data via maxQM l ,2' which is desirable, (2) producing more concentrated representa­
tions in Y to occupy less resource, which is also desirable and is the behind reason for 
solving the problem of selecting cluster number in clustering analysis Xu(1995a&c, 
1996a), (3) but with the cost of less discriminative representations in Y for the input 
data. Inversely, maxM l ,M2 K(M1 , M2 ) consists of (1) producing best discriminative 
or separable representation PMl (ylx) in Y for the input data set, which is desirable, 
in the cost of (2) producing a more uniform representation in Y to fully occupy the 
resource, and (3) causing PM2(xly) away from fitting input data. 

Shown in Table 2 are the unified existing unsupervised learnings. For the case 
H-f- W, we have hMl = h, haMl =ha , QMl,2 =QM2, and minMJ«M1 , M2) re­
sults in PM2(y) = PMl (y) =O:y and PM2(xly)PM2(Y) = PM2(X)PMl (ylx) with 

PM2 (X) =I:~=l PM2 (xly)PM2 (y)· In turn, we get K(M1 , M2) =-LM2 + D with 
LM2 being the likelihood given by eq.(E5), i.e ., we get maximum likelihood estima­
tion on mixture model. In fact, the ALTMIN given in Tab.2 leads us to exactly the 
EM algorithm by Dempster et al(1977). Also, here PMl(X,y), PM2(X,y) is equiv­
alent to the data submanifold D and model submanifold M in the Information 
Geometry theory (Amari, 1995a&b), with the ALTMIN being the em algorithm. 
As shown in Xu(95a), the cases also includes the MDL auto-encoder (Hinton & 
Zemel, 1994) and Multi-sets modeling (Xu, 1995e). 

For the case Single-M, the hMl - haMl is actually the information transmitted by 
the YANG part from x to y. In this case, its minimization produces a non-sensible 
model for learning. However, its maximization is exactly the Informax learning 
scheme (Linsker, 1989; Atick & Redlich, 1990; Bell & Sejnowski, 1995). Here, we 
clear up a confusion made in Xu(95a&b) where the minimization was mistakenly 
considered. 

For the case H-m- W, the hMl -haMl -QMl,2 isjust the -F(d; B, Q) used by Dayan et 
al (1995) and Hinton et al (1995) for Helmholtz machine. We can set up the detailed 
correspondence that (i) here PMl(ylx;) is their Qa; (ii) logPM2(x,y is their -Ea; 
and (iii) their Pa is PM2 (ylx) = PM2(xly)PM2(Y)/ I:y PM2(xly)PM2(Y). So, we get 
a new perspective for Helmholtz machine. Moreover, we know that K(M1, M2) be­
comes a negative likelihood only when PM2(xly)PM2(Y) = PM2(X)PMl (ylx), which 
is usually not true when the YANG and YING parts are both parametric. So 
Helmholtz machine is not equivalent to maximum likelihood learning in general 
with a gap depending on PM2(xly)PM2 (y) - PM2 (X)PMl (ylx). The equivalence is 
approximately acceptable only when the family of PM2(xly) or/and PMl (ylx;) is 
large enough or M2 , Ml are both linear with gaussian density. 

In Tab.4, the case Single-Munder K(M2, Ml) is the classical maximum likelihood 
(ML) learning for supervised learning which includes the least square learning by 
back propagation (BP) for feedfarward net as a special case. Moreover, its counter­
part for a backward net as inverse mapping is the case Single-Funder K(Ml, M2). 

4 NEW LEARNING MODELS 

First, a number of variants for the above existing models are given in Table 2. 

Second, a particular new model can be obtained from the case H-m- Wby changing 
minM l ,M2 into maxM l ,M2. That is, we have maXM l ,M2 [hMl - haMl - QMl,2]' shortly 
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Table 2: BKC-YY Machine for Unsupervised Learning ( Part I) : K(MI, M2) 
Given Data {X;}f:l' Fix PMl (x) = Po(x) by eq.(l), and thus K(MI' M2) = Kb + D, with 

D irrelevant to M1 , M2 and K b given by the following formulae and table: 

h = -N1 ""N,k P(ylx;)logP(ylx;) , hMl = -N1 "" PMl(ylx;)logPMl(ylx;), (El) ~t"y Ut ,y 

haMl = 2::yO'~llogO'~l, O'~l = 1:i 2::; PMl(ylx;), ha = 2::yO'ylogO'y, (E2) 

O'y = 1:i 2::. P(ylx;), P(ylx;) = O'yPM2 (xily)J 2:: y O'yPM2 (x;iy), (E3) 

qM1 ,2 = 1:; 2::;,y PMl (Ylx;) log PM2(x;iy), qM2 = 1:; 2::i,y P(ylx;) log PM2(Xily), (E4) 

L~2 = 1:i 2::; ,y O'y log PM2(x;iy), LM2 = 1:; 2::; log 2::y O'yPM2(X.ly) (E5) 

Marriage 
Status H-f-W Single-M Single-F H-m-W W-f-H 

PM2 (y) Uniform 
PMl (ylx) = PMl (y) PMl (ylx) PM2(y), 

Condition free, i.e., PM2(xly) PMl (ylx) and and free 

PMl:~YJXJ = PM2 (X) = PMl(y) PM2 (xly) PM~~~I~~ = Pyx = Po(xl = P xjy 
h-ha-qM2 hMl - haMl -LM2 lhMl-haMl haMl 

Kb = -LM2 (~~l~)] (minl (max) (min) mIn (min) 
~1: t'IX ~1: t'IX 
M2, get Get MI Get M2 M2, get Get 
P(ylx;) by max by MI by MI by 
O'y by hMl-haMl max min [hMl mm 

(E3), O'~l L~2' -haMl - QMl,2] haMl 
ALTMIN by (E2) 

82: get 82: Fix M 1 , 

M2 by get M2 by 
max QM2. max QMl 2' 
Kepeat No No Kepeat No 
81,82. Repeat Repeat 81,82. Repeat 

1. ML on 
Mixtures 

&EM Dupli-
(Dem77) Informax, cated Helm- Related 

2. Inform- Maximum models holtz to 
Existing ation mutual by ML machine PCA 
Equiv- geometry Inform- learning (Hin95) 

-lent (Amari95) ation on (Day95) 
models 3. MDL ~Lin89~ input 

Auto- Ati90 data. 
encoder (BeI95) 

Win94) 4. ulti-sets 
modeling 
(Xu94 ,95) 

1. t'or H-f- W type, we have: 
Three VQ variants when PM2(xly) is Gaussian. Also, criteria for 

New selecting the correct k for VQ or clustering (Xu95a&c). 
Results 2. For H-m-W type, we have: 

Robust PCA + criterion for determining subspace dimension (Xu, 95c). 
1. More smooth PMl_(x)given by Parzen window estimate. 
2. Factorial coding PM2(y) = ~M2(Y;) with binary y = [YI "', yrn]. 

Variants 3. Factorial coding PMl (ylx) = . PM2 (Yi Ix) with binary [YI ... , Yrn]. 
4. Replace '2::11 .' in all the above items by 'fu ·dy' for real y. 

Note: H- Husband, W-WIfe, f- follows, M-Male, F-Female, m-matches. X-f-Y stands for 
X part is free. Single-X stands for the other part broken. H-m-W stands for both parts 

being parametric. '(min)' stands for min Kb and '(max), stands for max Kb. 
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Table 3: BKC-YY Machine for Unsupervised Learning ( Part II) : J(M2 , Ml) 
Given Data {Xi}F:I, Fix PMI (x) = Po(x) by eq.(l), and thus J(M2, Ml) = J(b + D, with 

D irrelevant to M1 , M2 and J(b given by the following formulae and table: 

MarrIage 
Status H-f-W Si ngle-M Single-F H-m-W 
C;ondahon The same as those m Table 1. 

hM2 lha M2 - lhaMI- hM2 [h~2 + 
- L MI ,2] - LMI ] + haMI -

J(b (if forcing -qM2,1] 
PM1(y) = 

(max) (min) P02·(~I) (max) (min) mIn 
S1: SI: ' SI: 
Fix M I , Fix M1 , Fix M 2 , 

Get M2 get ai:2 get ai:l Get M2 get MI 
by by (E7) . by (E2). by by 

max in Tab.l mIn 
hM2 S2: S2: max [haMI 

update update h~2' - q M2,1] 
MI by MI by 

ALTMIN max LMI ,2 max LMI S2: Fix M1 , 

get M2 
by min 

h~?-qM~ I 
1\l0 ttepeat ttepeat 1\l0 .H.epeat 

Repeat SI, S2 SI,S2 Repeat SI, S2 
t;xlstmg no no no no no 
models new! new! new! new! new! 
Vanants Imilar to those m Table 1. 

Table 4: BKC-YY Machine for Supervised Learning 
Given Data {Xi,y.}F:I , Fix PMI(X) = Po(x) by eq.(l). 

(E6) 

(E7) 

(ES) 

(E9) 

(ElO) 

W-f-H 

-LaMI 

(min) 

Get MI 
by 

max 

L o MI 

1\l0 

Repeat 
no 

new! 

h'kl = -kEiPM1(y;JXi)logPMI(Yil x i), h'k2 = -kEiPM2(x;JYi)logPM2(x;Jy.), (Ell) 
Q'kI ,2 = -k Ei PMI (y;JXi) log PM2 (xdYi), Q'k2 , 1 = -k Ei PM2(X;Jy.) log PMI (Y.lxi) , (El2) 
L'kl = -k Ei log PMI (y;JX i ), L'k2 = -k Ei log PM2(XiIYi) , (El3) 

K(MI, M2) = Kb + D J((M2 , MI) = J(b + D 
Marnage 
Status Single-M Single-F H-m-W Single-M Si ngle-F H-m-W 

J(b hMl -LM2 hMI -QMI2 -LMI hM2 hM2-QM2 1 
(max) (min) (min) , (min) (max) (min) , 

mIrumum ML MIxed ML mlrumum Mixed 
Feature entropy (ME) F-B entropy B-F 

F-net B-net net F-net B-net net 
~'xastmg no tH' on no tiP on no no 
models new! B-net new! F-net new! new! 
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denoted by H-m- W-Max. This model is a dual to the Helmholtz machine in order 
to focus on getting best discriminative or separable representations PM l (ylx) in Y 
instead of best fitting of PM2(xly) on input data. 

Third, by replacing K(M1 , M 2) with K(M2, M 1 ), in Table 3 we can obtain new 
models that are the counterparts of those given in Table 2. For the case H-J- W, 
its maxMl,M2 gives minimum entropy estimate on PM2 (X) instead of maximum 
likelihood estimate on PM2 (X) in Table 2. For the case Single-M, it will function 
similarly to the case Single-F in Table 2, but with minimum entropy on PMl (ylx) 
in Table 2 replaced by maximum likelihood on PM l (ylx) here. For the case H-m­
W, the focus shifts from on getting best fitting of PM2(xly) on input data to on 
getting best discriminative representations PM 1 (ylx) in Y, which is similar to the 
just mentioned H-m- W-Max, but with minimum entropy on PMJylx) replaced by 
maximum likelihood on PM 1 (ylx). The other two cases in Table 3 have been also 
changed similarly from those in Table 2. 

Fourth, several new model have also been proposed in Table 4 for supervised learn­
ing . Instead of maximum likelihood, the new models suggest learning by minimum 
entropy or a mix of maximum likelihood and minimum entropy. 

Finally, further studies on the other status in Table 1 are needed. Heuristically, 
we can also treat the case H-m- W by two separated steps. We first get Ml by 
max[hMl - haMl], and then get M2 by maxqMl,2; or we first get M2 by min[h -
ha - qM2] and then get Ml by min[hMl - haMl - QMl,2]' The two algorithms 
attempt to get both a good discriminative representation by PMl (ylx) and a good 
fitting of PM2 (xly) on input data. However whether they work well needs to be 
tested experimentally. 

We are currently conducting experiments on comparison several of the above new 
models against their existing counterparts. 
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