
A Practical Monte Carlo Implementation 
of Bayesian Learning 

Carl Edward Rasmussen 
Department of Computer Science 

University of Toronto 
Toronto, Ontario, M5S 1A4, Canada 

carl@cs.toronto.edu 

Abstract 

A practical method for Bayesian training of feed-forward neural 
networks using sophisticated Monte Carlo methods is presented 
and evaluated. In reasonably small amounts of computer time this 
approach outperforms other state-of-the-art methods on 5 data
limited tasks from real world domains. 

1 INTRODUCTION 

Bayesian learning uses a prior on model parameters, combines this with information 
from a training set , and then integrates over the resulting posterior to make pre
dictions. With this approach, we can use large networks without fear of overfitting, 
allowing us to capture more structure in the data, thus improving prediction accu
racy and eliminating the tedious search (often performed using cross validation) for 
the model complexity that optimises the bias/variance tradeoff. In this approach 
the size of the model is limited only by computational considerations. 

The application of Bayesian learning to neural networks has been pioneered by 
MacKay (1992), who uses a Gaussian approximation to the posterior weight distri
bution. However, the Gaussian approximation is poor because of multiple modes in 
the posterior. Even locally around a mode the accuracy of the Gaussian approxi
mation is questionable, especially when the model is large compared to the amount 
of training data. 

Here I present and test a Monte Carlo method (Neal, 1995) which avoids the 
Gaussian approximation. The implementation is complicated, but the user is not re
quired to have extensive knowledge about the algorithm. Thus, the implementation 
represents a practical tool for learning in neural nets. 



A Practical Monte Carlo Implementation of Bayesian Learning 599 

1.1 THE PREDICTION TASK 

The training data consists of n examples in the form of inputs x = {x(i)} and 
corresponding outputs y = {y(i)} where i = 1 ... n. For simplicity we consider 
only real-valued scalar outputs. The network is parametrised by weights w, and 
hyperparameters h that control the distributions for weights, playing a role similar 
to that of conventional weight decay. Weights and hyperparameters are collectively 
termed 0, and the network function is written as F/I (x), although the function value 
is only indirectly dependent on the hyperparameters (through the weights). 

Bayes' rule gives the posterior distribution for the parameters in terms of the like
lihood, p(ylx, 0), and prior, p(O): 

(Olx ) = p(O)p(ylx, O) 
p ,y p(ylx) 

To minimize the expected squared error on an unseen test case with input x(n+l), 

we use the mean prediction 

(1) 

2 MONTE CARLO SAMPLING 

The following implementation is due to Neal (1995). The network weights are 
updated using the hybrid Monte Carlo method (Duane et al. 1987). This method 
combines the Metropolis algorithm with dynamical simulation. This helps to avoid 
the random walk behavior of simple forms of Metropolis, which is essential if we 
wish to explore weight space efficiently. The hyperparameters are updated using 
Gibbs sampling. 

2.1 NETWORK SPECIFICATION 

The networks used here are always of the same form: a single linear output unit, a 
single hidden layer of tanh units and a task dependent number of input units. All 
layers are fully connected in a feed forward manner (including direct connections 
from input to output). The output and hidden units have biases. 

The network priors are specified in a hierarchical manner in terms of hyperparam
eters; weights of different kinds are divided into groups, each group having it's own 
prior. The output-bias is given a zero-mean Gaussian prior with a std. dev. of 
u = 1000, so it is effectively unconstrained. 

The hidden-biases are given a two layer prior: the bias b is given a zero-mean 
Gaussian prior b '" N(O, ( 2 ); the value of u is specified in terms of precision r = u- 2 , 

which is given a Gamma prior with mean p = 400 (corresponding to u = 0.05) and 
shape parameter a = 0.5; the Gamma density is given by p(r) '" Gamma(p, a) ex: 
r Ol / 2 - 1 exp( -ra/2p). Note that this type of prior introduces a dependency between 
the biases for different hidden units through the common r. The prior for the 
hidden-to-output weights is identical to the prior for the hidden-biases, except that 
the variance of these weights under the prior is scaled down by the square root 
of the number of hidden units, such that the network output magnitude becomes 
independent of the number of hidden units. The noise variance is also given a 
Gamma prior with these parameters. 



600 C. E. RASMUSSEN 

The input-to-hidden weights are given a three layer prior: again each weight is 
given a zero-mean Gaussian prior w rv N(O, (12); the corresponding precision for 
the weights out of input unit i is given a Gamma prior with a mean J.l and a shape 
parameter a1 = 0.5: Ti rv Gamma(J.l, a1). The mean J.l is determined on the top 
level by a Gamma distribution with mean and shape parameter ao = 1: J.li rv 

Gamma(400,ao). The direct input-to-output connections are also given this prior. 

The above-mentioned 3 layer prior incorporates the idea of Automatic Relevance 
Determination (ARD), due to MacKay and Neal, and discussed in Neal (1995) . The 
hyperparameters, Ti, associated with individual inputs can adapt according to the 
relevance of the input; for an unimportant input, Ti can grow very large (governed 
by the top level prior), thus forcing (1i and the associated weights to vanish. 

2.2 MONTE CARLO SPECIFICATION 

Sampling from the posterior weight distribution is performed by iteratively updating 
the values of the network weights and hyperparameters. Each iteration involves two 
components: weight updates and hyperparameter updates. A cursory description 
of these steps follows. 

2.2.1 Weight Updates 

Weight updates are done using the hybrid Monte Carlo method . A fictitious dy
namical system is generated by interpreting weights as positions, and augmenting 
the weights w with momentum variables p. The purpose of the dynamical system 
is to give the weights "inertia" so that slow random walk behaviour can be avoided 
during exploration of weight space. The total energy, H, of the system is the sum 
of the kinetic energy, I<, (a function of the momenta) and the potential energy, E. 
The potential energy is defined such that p(w) ex exp( -E). We sample from the 
joint distribution for wand p given by p(w,p) ex exp(-E - I<), under which the 
marginal distribution for w is given by the posterior. A sample of weights from the 
posterior can therefore be obtained by simply ignoring the momenta. 

Sampling from the joint distribution is achieved by two steps: 1) finding new points 
in phase space with near-identical energies H by simulating the dynamical system 
using a discretised approximation to Hamiltonian dynamics, and 2) changing the 
energy H by doing Gibbs sampling for the momentum variables. 

Hamiltonian Dynamics. Hamilton's first order differential equations for Hare 
approximated by a series of discrete first order steps (specifically by the leapfrog 
method). The first derivatives of the network error function enter through the 
derivative of the potential energy, and are computed using backpropagation. In 
the original version of the hybrid Monte Carlo method the final position is then 
accepted or rejected depending on the final energy H'" (which is not necessarily 
equal to the initial energy H because of the discretisation). Here we use a modified 
version that uses an average over a window of states instead. The step size of the 
discrete dynamics should be as large as possible while keeping the rejection rate 
low. The step sizes are set individually using several heuristic approximations, and 
scaled by an overall parameter c. We use L = 200 iterations, a window size of 20 
and a step size of c = 0.2 for all simulations. 

Gibbs Sampling for Momentum Variables. The momentum variables are 
updated using a modified version of Gibbs sampling, allowing the energy H to 
change. A "persistence" of 0.95 is used; the new value of the momentum is a 
weighted sum of the previous value (weight 0.95) and the value obtained by Gibbs 
sampling (weight (1 - 0.952)1/2). With this form of persistence, the momenta 



A Practical Monte Carlo Implementation of Bayesian Learning 601 

changes approx. 20 times more slowly, thus increasing the "inertia" of the weights, 
so as to further help in avoiding random walks. Larger values of the persistence will 
further increase the weight inertia, but reduce the rate of exploration of H. The 
advantage of increasing the weight inertia in this way rather than by increasing L is 
that the hyperparameters are updated at shorter intervals, allowing them to adapt 
to the rapidly changing weights. 

2.2.2 Hyperparameter Updates 

The hyperparameters are updated using Gibbs sampling. The conditional distribu
tions for the hyperparameters given the weights are of the Gamma form, for which 
efficient generators exist, except for the top-level hyperparameter in the case of the 
3 layer priors used for the weights from the inputs; in this case the conditional 
distribution is more complicated and a form of rejection sampling is employed. 

2.3 NETWORK TRAINING AND PREDICTION 

The network training consists of two levels of initialisation before sampling for 
networks used for prediction. At the first level of initialisation the hyperparameters 
(variance of the Gaussians) are kept constant at 1, allowing the weights to grow 
during 1000 leapfrog iterations. Neglecting this phase can cause the network to get 
caught for a long time in a state where weights and hyperparameters are both very 
small. 

The scheme described above is then invoked and run for as long as desired, even
tually producing networks from the posterior distribution. The initial 1/3 of these 
nets are discarded, since the algorithm may need time to reach regions of high pos
terior probability. Networks sampled during the remainder of the run are saved for 
making predictions. 

The predictions are made using an average of the networks sampled from the pos
terior as an approximation to the integral in eq. (1). Since the output unit is linear 
the final prediction can be seen as coming from a huge (fully connected) ensemble 
net with appropriately scaled output weights. All the results reported here were 
for ensemble nets with 4000 hidden units. The size of the individual nets is given 
by the rule that we want at least as many network parameters as we have training 
examples (with a lower limit of 4 hidden units). We hope thereby to be well out of 
the underfitting region. Using even larger nets would probably not gain us much 
(in the face of the limited training data) and is avoided for computational reasons. 

All runs used the parameter values given above. The only check that is necessary 
is that the rejection rate stays low, say below 5%; if not, the step size should 
be lowered. In all runs reported here, c = 0.2 was adequate. The parameters 
concerning the Monte Carlo method and the network priors were all selected based 
on intuition and on experience with toy problems. Thus no parameters need to be 
set by the user. 

3 TESTS 

The performance of the algorithm was evaluated by comparing it to other state-of
the-art methods on 5 real-world regression tasks. All 5 data sets have previously 
been studied using a 10-way cross-validation scheme (Quinlan 1993). The tasks 
in these domains is to predict price or performance of an object from various dis
crete and real-valued attributes. For each domain the data is split into two sets 
of roughly equal size, one for training and one for testing. The training data is 



602 C. E. RASMUSSEN 

further subdivided into full-, half-, quarter-and eighth-sized subsets, 15 subsets in 
total. Networks are trained on each of these partitions, and evaluated on the large 
common test set. On the small training sets, the average performance and one 
std. dev. error bars on this estimate are computed. 

3.1 ALGORITHMS 

The Monte Carlo method was compared to four other algorithms. For the three 
neural network methods nets with a single hidden layer and direct input-output 
connections were used. The Monte Carlo method was run for 1 hour on each of the 
small training sets, and 2,4 and 8 hours respectively on the larger training sets. All 
simulations were done on a 200 MHz MIPS R4400 processor. The Gaussian Process 
method is described in a companion paper (Williams & Rasmussen 1996). 

The Evidence method (MacKay 1992) was used for a network with separate hyper
parameters for the direct connections, the weights from individual inputs (ARD), 
hidden biases, and output biases. Nets were trained using a conjugate gradient 
method, allowing 10000 gradient evaluations (batch) before each of 6 updates of 
the hyperparameters. The network Hessian was computed analytically. The value 
of the evidence was computed without compensating for network symmetries, since 
this can lead to a vastly over-estimated evidence for big networks where the poste
rior Gaussians from different modes overlap. A large number of nets were trained for 
each task, with the number of hidden units computed from the results of previous 
nets by the following heuristics: The min and max number of hidden units in the 20% 
nets with the highest evidences were found. The new architecture is picked from a 
Gaussian (truncated at 0) with mean (max - min)/2 and std. dev. 2 + max - min, 
which is thought to give a reasonable trade-off between exploration and exploita
tion. This procedure is run for 1 hour of cpu time or until more than 1000 nets have 
been trained. The final predictions are made from an ensemble of the 20% (but a 
maximum of 100) nets with the highest evidence. 

An ensemble method using cross-validation to search over a 2-dimensional grid for 
the number of hidden units and the value of a single weight decay parameter has 
been included, as an attempt to have a thorough version of "common practise". 
The weight decay parameter takes on the values 0, 0.01, 0.04, 0.16, 0.64 and 2.56. 
Up to 6 sizes of nets are used, from 0 hidden units (a linear model) up to a number 
that gives as many weights as training examples. Networks are trained with a 
conjugent gradient method for 10000 epochs on each of these up to 36 networks, 
and performance was monitored on a validation set containing 1/3 of the examples, 
selected at random. This was repeated 5 times with different random validation 
sets, and the architecture and weight decay that did best on average was selected. 
The predictions are made from an ensemble of 10 nets with this architecture, trained 
on the full training set. This algorithm took several hours of cpu time for the largest 
training sets. 

The Multivariate Adaptive Regression Splines (MARS) method (Friedman 1991) 
was included as a non-neural network approach. It is possible to vary the maximum 
number of variables allowed to interact in the additive components of the model. 
It is common to allow either pairwise or full interactions. I do not have sufficient 
experience with MARS to make this choice. Therefore, I tried both options and 
reported for each partition on each domain the best performance based on the 
test error, so results as good as the ones reported here might not be obtainable in 
practise. All other parameters of MARS were left at their default values. MARS 
always required less than 1 minute of cpu time. 






