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Abstract 

Most current methods for prediction of protein secondary structure 
use a small window of the protein sequence to predict the structure 
of the central amino acid. We describe a new method for prediction 
of the non-local structure called ,8-sheet, which consists of two or 
more ,8-strands that are connected by hydrogen bonds. Since,8-
strands are often widely separated in the protein chain , a network 
with two windows is introduced. After training on a set of proteins 
the network predicts the sheets well, but there are many false pos­
itives . By using a global energy function the ,8-sheet prediction is 
combined with a local prediction of the three secondary structures 
a-helix, ,8-strand and coil. The energy function is minimized using 
simulated annealing to give a final prediction. 

1 INTRODUCTION 

Proteins are long sequences of amino acids. There are 20 different amino acids with 
varying chemical properties, e. g. , some are hydrophobic (dislikes water) and some 
are hydrophilic [1]. It is convenient to represent each amino acid by a letter and 
the sequence of amino acids in a protein (the primary structure) can be written as 
a string with a typical length of 100 to 500 letters. A protein chain folds back on 
itself, and the resulting 3D structure (the tertiary structure) is highly correlated to 
the function of the protein. The prediction of the 3D structure from the primary 
structure is one of the long-standing unsolved problems in molecular biology. As 
an important step on the way a lot of work has been devoted to predicting the 
local conformation of the protein chain, which is called the secondary structure. 
Neural network methods are currently the most successful for predicting secondary 
structure. The approach was pioneered by Qian and Sejnowski [2] and Bohr et al. 
[3], but later extended in various ways, see e.g. [4] for an overview. In most of this 
work, only the two regular secondary structure elements a-helix and ,8-strand are 
being distinguished, and everything else is labeled coil. Thus, the methods based 
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Figure 1: Left: Anti-parallel,B-sheet. The vertical lines correspond to the backbone 
of the protein. An amino acid consists of N-Ca-C and a side chain on the Ca that 
is not shown (the 20 amino acids are distinguished by different side chains). In the 
anti-parallel sheet the directions of the strands alternate, which is here indicated 
quite explicitly by showing the middle strand up-side down. The H-bonds between 
the strands are shown by 11111111. A sheet has two or more strands, here the anti­
parallel sheet is shown with three strands. Right: Parallel ,B-sheet consisting of two 
strands. 

on a local window of amino acids give a three-state prediction of the secondary 
structure of the central amino acid in the window. 

Current predictions of secondary structure based on single sequences as input have 
accuracies of about 65-66%. It is widely believed that this accuracy is close to 
the limit of what can be done from a local window (using only single sequences as 
input) [5], because interactions between amino acids far apart in the protein chain 
are important to the structure. A good example of such non-local interactions 
are the ,B-sheets consisting of two or more ,B-strands interconnected by H-bonds, 
see fig. 1. Often the ,B-strands in a sheet are widely separated in the sequence, 
implying that only part of the available sequence information about a ,B-sheet can 
be contained in a window of, say, 13 amino acids. This is one of the reasons why the 
accuracy of ,B-strand predictions are generally lower than the accuracy of a-helix 
predictions. The aim of this work is to improve prediction of secondary structures 
by combining local predictions of a-helix, ,B-strand and coil with a non-local method 
predicting ,B-sheets. 

Other work along the same directions include [6] in which ,B-sheet predictions are 
done by linear methods and [7] where a so-called density network is applied to the 
problem. 

2 A NEURAL NETWORK WITH TWO WINDOWS 

We aim at capturing correlations in the ,B-sheets by using a neural network with 
two windows, see fig. 2. While window 1 is centered around amino acid number i 
(ai), window 2 slides along the rest of the chain. When the amino acids centered in 
each of the two windows sit opposite each other in a ,B-sheet the target output is 1, 
and otherwise O. After the whole protein has been traversed by window 2, window 1 
is moved to the next position (i + 1) and the procedure is repeated. If the protein is 
L amino acids long this procedure yields an output value for each of the L(L -1)/2 
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Figure 2: Neural network for pre­
dicting ,B-sheets. The network 
employs weight sharing to im­
prove the encoding of the amino 
acids and to reduce the number 
of adjustable parameters. 
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pairs of amino acids. We display the output in a L x L gray-scale image as shown in 
fig. 3. We assume symmetry of sheets, i.e., if the two windows are interchanged, the 
output does not change. This symmetry is ensured (approximately) during training 
by presenting all inputs in both directions. 

Each window of the network sees K amino acids. An amino acid is represented by a 
vector of20 binary numbers all being zero, except one, which is 1. That is, the amino 
acid A is represented by the vector 1,0,0, ... ,0 and so on. This coding ensures that 
the input representations are un correlated , but it is a very inefficient coding, since 
20 amino acids could in principle be represented by only 5 bit. Therefore, we use 
weight sharing [8] to learn a better encoding [4]. The 20 input units corresponding 
to one window position are fully connected to three hidden units. The 3 x (20 + 1) 
weights to these units are shared by all window positions, i.e., the activation of the 
3 hidden units is a new learned encoding of the amino acids, so instead of being 
represented by 20 binary values they are represented by 3 real values. Of course the 
number of units for this encoding can be varied, but initial experiments showed that 
3 was optimal [4]. The two windows of the network are made the same way with 
the same number of inputs etc .. The first layer of hidden units in the two windows 
are fully connected to a hidden layer which is fully connected to the output unit, see 
fig. 2. Furthermore, two structurally identical networks are used: one for parallel 
and one for anti-parallel ,B-sheets. 

The basis for the training set in this study is the set of 126 non-homologous protein 
chains used in [9], but chains forming ,B-sheets with other chains are excluded. This 
leaves us with 85 proteins in our data set. For a protein of length L only a very small 
fraction of the L(L - 1)/2 pairs are positive examples of ,B-sheet pairs. Therefore 
it is very important to balance the positive and negative examples to avoid the 
situation where the network always predicts no ,B-sheet. Furthermore, there are 
several types of negative examples with quite different occurrences: 1) two amino 
acids of which none belong to a ,B-sheet; 2) one in a ,B-sheet and one which is not in 
a ,B-sheet; 3) two sitting in ,B-sheets, but not opposite to each other. The balancing 
was done in the following way. For each positive example selected at random a 
negative example from each of the three categories were selected at random. 

If the network does not have a second layer of hidden units, it turns out that the 
result is no better than a network with only one input window, i.e., the network 
cannot capture correlations between the two windows. Initial experiments indicated 
that about 10 units in the second hidden layer and two identical input windows of 
size K = 9 gave the best results. In fig. 3(left) the prediction of anti-parallel sheets 
is shown for the protein identified as 1acx in the Brookhaven Protein Data Bank 
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Figure 3: Left: The prediction of anti-parallel ,8-sheets in the protein laex. In the 
upper triangle the correct structure is shown by a black square for each ,8-sheet 
pair. The lower triangle shows the prediction by the two-window network. For 
any pair of amino acids the network output is a number between zero (white) and 
one (black), and it is displayed by a linear gray-scale. The diagonal shows the 
prediction of a-helices. Right: The same display for parallel ,8-sheets in the protein 
4fxn. Notice that the correct structure are lines parallel to the diagonal, whereas 
they are perpendicular for anti-parallel sheets. For both cases the network was 
trained on a training set that did not contain the protein for which the result is 
shown. 

[10]. First of all, one notices the checker board structure of the prediction of ,8-
sheets. This is related to the structure of ,8-sheets. Many sheets are hydrophobic 
on one side and hydrophilic on the other. The side chains of the amino acids in 
a strand alternates between the two sides of the sheet, and this gives rise to the 
periodicity responsible for the pattern. 

Another network was trained on parallel ,8-sheets. These are rare compared to 
the anti-parallel ones, so the amount of training data is limited. In fig. 3(right) 
the result is shown for protein 4fxn. This prediction seems better than the one 
obtained for anti-parallel sheets, although false positive predictions still occurs at 
some positions with strands that do not pair. Strands that bind in parallel ,8-sheets 
are generally more widely separated in the sequence than strands in anti-parallel 
sheets. Therefore, one can imagine that the strands in parallel sheets have to be 
more correlated to find each other in the folding process, which would explain the 
better prediction accuracy. 

The results shown in fig. 3 are fairly representative. The network misses some of the 
sheets, but false positives present a more severe problem. By calculating correlation 
coefficients we can show that the network doe!> capture some correlations, but they 
seem to be weak. Based on these results, we hypothesize that the formation of ,8-
sheets is only weakly dependent on correlations between corresponding ,8-strands. 
This is quite surprising. However weak these correlations are, we believe they can 
still improve the accuracy of the three state secondary structure prediction. In 
order to combine local methods with the non-local ,8-sheet prediction, we introduce 
a global energy function as described below. 
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3 A GLOBAL ENERGY FUNCTION 

We use a newly developed local neural network method based on one input window 
[4] to give an initial prediction of the three possible structures. The output from 
this network is constrained by soft max [11], and can thus be interpreted as the 
probabilities for each of the three structures. That is, for amino acid ai, it yields 
three numbers Pi,n, n = 1,2 or 3 indicating the probability of a-helix (Pi,l) , (3-
sheet (pi,2), or coil (pi,3). Define Si,n = 1 if amino acid i is assigned structure n 
and Si,n = 0 otherwise. Also define hi,n = 10gPi,n. We now construct the 'energy 
function' 

(1) 
i n 

where weights Un are introduced for later usage. Assuming the probabilities Pi,n are 
independent for any two amino acids in a sequence, this is the negative log likelihood 
of the assigned secondary structure represented by s, provided that Un = 1. As it 
stands, alone, it is a fairly trivial energy function, because the minimum is the 
assignment which corresponds to the prediction with the maximum Pi,n at each 
position i-the assignment of secondary structure that one would probably use 
anyway. 

For amino acids ai and aj the logarithm of the output of the (3-sheet network 
described previously is called qfj for parallel (3-sheets and qfj for anti-parallel sheets. 
We interpret these numbers as the gain in energy if a (3-sheet pair is formed. (As 
more terms are added to the energy, the interpretation as a log-likelihood function 
is gradually fading.) If the two amino acids form a pair in a parallel (3-sheet, we 
set the variable T~ equal to 1, and otherwise to 0, and similarly with Tii for anti-
parallel sheets. Thus the Tii and T~ are sparse binary matrices. Now the total 
energy of the (3-sheets can be expressed as 

Hf3(s, T a, TP) = - ~[CaqfjTij + CpqfjT~], (2) 
'J 

where Ca and Cp determine the weights of the two terms in the function. Since 
an amino acid can only be in one structure, the dynamic T and S variables are 
constrained: Only Tii or T~ can be 1 for the same (i, j), and if any of them is 1 the 
amino acids involved must be in a (3-sheet, so Si,2 = Sj,2 = 1. Also, Si ,2 can only be 
1 if there exists a j with either Iii or T~ equal to 1. Because of these constraints 
we have indicated an S dependence of H f3. 

The last term in our energy function introduces correlations between neighboring 
amino acids. The above assumption that the secondary structure of the amino acids 
are independent is of course a bad assumption, and we try to repair it with a term 

Hn(s) = L: L: Jnm Si,n Si+l,m, 
i nm 

(3) 

that introduces nearest neighbor interactions in the chain. A negative J11, for 
instance, means that a following a is favored, and e.g., a positive h2 discourages 
a (3 following an a. 

Now the total energy is 

(4) 

Since (3-sheets are introduced in two ways, through hi ,2 and qij, we need the weights 
Un in (1) to be different from 1. 

The total energy function (4) has some resemblance with a so-called Potts glass 
in an external field [12]. The crucial difference is that the couplings between the 
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'spins' Si are dependent on the dynamic variables T. Another analogy of the energy 
function is to image analysis, where couplings like the T's are sometimes used as 
edge elements. 

3.1 PARAMETER ESTIMATION 

The energy function contains a number of parameters, Un, Ca , Cp and Jnm . These 
parameters were estimated by a method inspired by Boltzmann learning [13]. In 
the Boltzmann machine the estimation of the weights can be formulated as a min­
imization of the difference between the free energy of the 'clamped' system and 
that of the 'free-running' system [14]. If we think of our energy function as a free 
energy (at zero temperature), it corresponds to minimizing the difference between 
the energy of the correct protein structure and the minimum energy, 

where p is the total number of proteins in the training set. Here the correct structure 
of protein J-l is called S(J-l) , Ta(J-l), TP(p), whereas s(J-l), Ta(J-l) , TP(J-l) represents the 
structure that minimizes the energy Htotal. By definition the second term of C is 
less than the first, so C is bounded from below by zero. 

The cost function C is minimized by gradient descent in the parameters . This is 
in principle straightforward, because all the parameters appear linearly in Htotal. 

However, a problem with this approach is that C is minimal when all the parameters 
are set to zero, because then the energy is zero. It is cured by constraining some of 
the parameters in Htotal. We chose the constraint l:n Un = 1. This may not be the 
perfect solution from a theoretical point of view, but it works well. Another problem 
with this approach is that one has to find the minimum of the energy Htotal in the 
dynamic variables in each iteration of the gradient descent procedure. To globally 
minimize the function by simulated annealing each time would be very costly in 
terms of computer time. Instead of using the (global) minimum of the energy for 
each protein, we use the energy obtained by minimizing the energy from the correct 
structure. This minimization is done by a greedy algorithm in the following way. 
In each iteration the change in s, Ta, TP which results in the largest decrease in 
Htotal is carried out. This is repeated until any change will increase Htotal. This 
algorithm works towards a local stability of the protein structures in the training 
set. We believe it is not only an efficient way of doing it, but also a very sensible 
way. In fact, the method may well be applicable in other models, such as Boltzmann 
machines. 

3.2 STRUCTURE PREDICTION BY SIMULATED ANNEALING 

After estimation of the parameters on which the energy function Htotal depends, we 
can proceed to predict the structure of new proteins. This was done using simulated 
annealing and the EBSA package [15]. The total procedure for prediction is, 

1. A neural net predicts a-helix, ,8-strand or coil. The logarithm of these 
predictions give all the hi,n for that protein. 

2. The two-window neural networks predict the ,8-sheets. The result is the qfj 
from one network and the qfj from the other. 

3. A random configuration of S, Ta, TP variables is generated from which the 
simulated annealing minimization of Htotal was started. During annealing, 
all constraints on s, Ta, TP variables are strictly enforced. 
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4. The final minimum configuration s is the prediction of the secondary struc-
ture. The ,B-sheets are predicted by t a and tv. 

Using the above scheme, an average secondary structure accuracy of 66.5% is ob­
tained by seven-fold cross validation. This should be compared to 66.3% obtained 
by the local neural network based method [4] on the same data set. Although these 
preliminary results do not represent a significant improvement, we consider them 
very encouraging for future work. Because the method not only predicts the sec­
ondary structure, but also which strands actually binds to form ,B-sheets, even a 
modest result may be an important step on the way to full 3D predictions. 

4 CONCLUSION 

In this paper we introduced several novel ideas which may be applicable in other 
contexts than prediction of protein structure. Firstly, we described a neural network 
with two input windows that was used for predicting the non-local structure called 
,B-sheets. Secondly, we combined local predictions of a-helix, ,B-strand and coil 
with the ,B-sheet prediction by minimization of a global energy function. Thirdly, 
we showed how the adjustable parameters in the energy function could be estimated 
by a method similar to Boltzmann learning. 

We found that correlations between ,B-strands in ,B-sheets are surprisingly weak. 
Using the energy function to combine predictions improves performance a little. 
Although we have not solved the protein folding problem, we consider the results 
very encouraging for future work. This will include attempts to improve the perfor­
mance of the two-window network as well as experimenting with the energy function, 
and maybe add more terms to incorporate new constraints. 
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