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Abstract 
Topographic maps in primary areas of mammalian cerebral cortex reor­
ganise as a result of behavioural training. The nature of this reorgani­
sation seems consistent with the behaviour of competitive neural net­
works, as has been demonstrated in the past by computer simulation. 
We model tactile training on the hand representation in primate somato­
sensory cortex, using the Neural Field Theory of Amari and his col­
leagues. Expressions for changes in both receptive field size and mag­
nification factor are derived, which are consistent with owl monkey ex­
periments and make a prediction which goes beyond them. 

1. INTRODUCTION 

The primary cortical areas of mammals are now known to be plastic throughout life; re­
viewed recently by Kaas(1995). The problem of how and why the underlying learning 
processes work is an exciting one, for which neural network modelling appears well 
suited. In this contribution, we model the long-term effects of tactile training (Jenkins et 
ai, 1990) on the functional organisation of monkey primary somatosensory cortex, by 
perturbing a topographic net (Takeuchi and Amari, 1979). 

1.1 ADAPTATION IN ADULT SOMATOSENSORY CORTEX 

Light touch activates skin receptors which in primates are mapped, largely topographi­
cally, in area 3b. In a series of papers, Merzenich and colleagues describe how area 3b 
becomes reorganised following peripheral nerve damage (Merzenich et ai, 1983a; 1983b) 
or digit amputation (Merzenich et ai, 1984). The underlying learning processes may also 
explain the phenomenon of phantom limb "telescoping" (Haber, 1955). Recent advances 
in brain scanning are beginning to make them observable even in the human brain 
(Mogilner et ai, 1993). 

1.2 ADAPTATION ASSOCIATED WITH TACTILE TRAINING 

Jenkins et al trained owl monkeys to maintain contact with a rotating disk. The apparatus 
was arranged so that success eventually involved touching the disk with only the digit 
tips. Hence these regions received selective stimulation. Some time after training had 
been completed electro-physiological recordings were made from area 3b. These re­
vealed an increase in Magnification Factor (MF) for the stimulated skin and a decrease in 
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the size of Receptive Fields (RFs) for that region. The net territory gained for light touch 
of the digit tips came from area 3a and/or the face region of area 3b, but details of any 
changes in these representations were not reported. 

2. THEORETICAL FRAMEWORK 

2.1 PREVIOUS WORK 

Takeuchi and Amari(1979), Ritter and Schulten(1986), Pearson et al(1987) and Grajski 
and Merzenich( 1990) have all modelled amputationldenervation by computer simulation 
of competitive neural networks with various Hebbian weight dynamics. Grajski and 
Merzenich(1990) also modelled the data of Jenkins et al. We build on this research 
within the Neural Field Theory framework (Amari, 1977; Takeuchi and Amari, 1979; 
Amari, 1980) of the Neural Activity Model of Willshaw and von der Malsburg(1976). 

2.2 NEURAL ACTIVITY MODEL 

Consider a "cortical" network of simple, laterally connected neurons. Neurons sum in­
puts linearly and output a sigmoidal function of this sum. The lateral connections are 
excitatory at short distances and inhibitory at longer ones. Such a network is competi­
tive: the steady state consists of blobs of activity centred around those neurons locally re­
ceiving the greatest afferent input (Amari, 1977). The range of the competition is limited 
by the range of the lateral inhibition. 

Suppose now that the afferent synapses adapt in a Hebbian manner to stimuli that are lo­
calised in the sensory array; the lateral ones are fixed. Willshaw and von der Mals­
burg(1976) showed by computer simulation that this network is able to form a topo­
graphic map of the sensory array. Takeuchi and Amari( 1979) amended the Willshaw­
Malsburg model slightly: neurons possess an adaptive firing threshold in order to prevent 
synaptic weight explosion, rather than the more usual mechanism of weight normalisa­
tion. They proved that a topographic mapping is stable under certain conditions. 

2.3 TAKEUCHI-AMARI THEORY 

Consider a one-dimensional model. The membrane dynamics are: 

au(~y,t) = -u(x,y,t)+ f s(x,y' ,t)a(y- y')dy'­

so(x,t)ao + f w(x-x')f[u(x' ,y,t)]dx'-h 

(1) 

Here u(x,y,t) is the membrane potential at time I for point x when a stimulus centred at y is 
being presented; h is a positive resting potential; w(z) is the lateral inhibitory weight be­
tween two points in the neural field separated by a distance z - positive for small Izl and 
negative for larger Izl; s(x,y,t) is the excitatory synaptic weight from y to x at time I and 
sr/X,I) is an inhibitory weight from a tonically active inhibitory input aD to x at time t - it is 
the adaptive firing threshold . f[u] is a binary threshold function that maps positive mem­
brane potentials to 1 and non-positive ones to O. 

Idealised, point-like stimuli are assumed, which "spread out" somewhat on the sensory 
surface or subcortically. The spreading process is assumed to be independent of y and is 
described in the same coordinates. It is represented by the function a(y-y'), which de­
scribes the effect of a point input at y spreading to the point y'. This is a decreasing, posi­
tive, symmetric function of Iy-y'l. With this type of input, the steady-state activity of the 
network is a single blob, localised around the neuron with maximum afferent input. 
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The afferent synaptic weights adapt in a leaky Hebbian manner but with a time constant 
much larger than that of the membrane dynamics (1). Effectively this means that learning 
occurs on the steady state of the membrane dynamics. The following averaged weight 
dynamics can be justified (Takeuchi and Amari, 1979; Geman 1979): 

as( x, y, t) ( J) ( [A )] at =-s x,y,t)+b p(y' a Y-Y')f u(x,y' dy' 

aso(~y,t) =-so(x,y,t)+b' aoJ p(y')f[u(x,y')]dy' 

(2) 

where r1(x,y') is the steady-state of the membrane dynamics at x given a stimulus at y' and 
p(y') is the probability of a stimulus at y '; b, b' are constants. 

Empirically, the "classical" Receptive Field (RF) of a neuron is defined as the region of 
the input field within which localised stimulation causes change in its activity. This con­
cept can be modelled in neural field theory as: the RF of a neuron at x is the portion of the 
input field within which a stimulus evokes a positive membrane potential (inhibitory RFs 
are not considered). If the neural field is a continuous map of the sensory surface then the 
RF of a neuron is fully described by its two borders rdx), rix), defined formally: 

i = 1,2 (3) 

which are illustrated in figure 1. 

Let RF size and RF position be denoted respectively by the functions rex) and m(x), which 
represent experimentally measurable quantities. In terms of the border functions they can 
be expressed: 

r(x) = r2 (x) - r1 (x) 

m(x) = -} (rl {x} + r2 (x)) 

y 

~--------------------------- x 

(4) 

Figure 1: RF 
boundaries as a 
function of position 
in the neural field, 
for a topographi­
cally ordered net­
work. Only the re­
gion in-between 
rdx) and rix) has 
positive steady-
state membrane 
potential r1(x,y). 
rdx) and rix) are 
defined by the 
condition 
r1(x,r;(x))=O 
i=J,2. 

for 

Using (1), (2) and the definition (3), Takeuchi and Amari(1979) derived dynamical equa­
tions for the change in RF borders due to learning. In the case of uniform stimulus prob­
ability, they found solutions for the steady-state RF border functions. With periodic 
boundary conditions, the basic solution is a linear map with constant RF size: 
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r(x) = ro = const 

m(x) = px ++ro 

uni ( ) rl x = px 

r~tni (x) = px+ ro 

85 

(5) 

This means that both RF size and activity blob size are uniform across the network and 
that RF position m(x) is a linear function of network location. (The value of p is deter­
mined by boundary conditions; ro is then determined from the joint equilibrium of (I), 
(2». The inverse of the RF position function, denoted by m-l(y), is the centre of the corti­
cal active region caused by a stimulus centred at y. The change in m-l(y) over a unit inter­
val in the input field is, by empirical definition, the cortical magnification factor (MF). 
Here we model MF as the rate of change of m-l(y). The MF for the system described by 
(5) is: 

d _I () -I -m y =p 
dy 

(6) 

3. ANALYSIS OF TACTILE TRAINING 

3.1 TRAINING MODEL AND ASSUMPTIONS 

Jenkins et aI's training sessions caused an increase in the relative frequency of stimulation 
to the finger tips, and hence a decrease in relative frequency of stimulation elsewhere. 
Over a long time, we can express this fact as a localised change in stimulus probability 
(figure 2). (This is not sufficient to cause cortical reorganisation - Recanzone et al( 1992) 
showed that attention to the stimulation is vital. We consider only attended stimulation in 
this model). To account for such data it is clearly necessary to analyse non-uniform 
stimulus probabilities, which demands extending the results of Takeuchi and Amari. Un­
fortunately, it seems to be hard to obtain general results. However, a perturbation analy­
sis around the uniform probability solution (5) is possible. 

To proceed in this way, we must be able to assume that the change in the stimulus prob­
ability density function away from uniformity is small. This reasoning is expressed by the 
following equation: 

p(y) = Po + E p(y) (7) 

where pry) is the new stimulus probability in terms of the uniform one and a perturbation 
due to training: E is a small constant. The effect of the perturbation is to ease the weight 
dynamics (2) away from the solution (5) to a new steady-state. Our goal is to discover the 
effect of this on the RF border functions, and hence for RF size and MF. 

p(y) 

o y 

Figure 2: The type 
of change in 
stimulus probabil­
ity density that we 
assume to model 
the effects of be­
havioural training. 
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3.2 PERTURBATION ANALYSIS 

3.2.1 General Case 

For a small enough perturbation, the effect on the RF borders and on the activity blob size 
ought also to be small. We consider effects to first order in E, seeking new solutions of 
the form: 

i = 1,2 
,{x} = r; {x} - ~ {x} 

m{x} = +(~ (X}+'2 (x}) 
(8) 

where the superscript peT denotes the new, perturbed equilibrium and uni denotes the un­
perturbed, uniform probability equilibrium. Using (1) and (2) in (3) for the post-training 
RF borders, expanding to first order in E, a pair of difference equations may be obtained 
for the changes in RF borders. It is convenient to define the following terms: 

ro rt '(x) 

At (x) = J p(y+ px)k(y)dy-b' a~ J p(y)dy 
o r,"no (x) 

o r;-n' (x ) 

A2 {x} = J p(y + px + TO )k(y)dy - b' a~ J p(y)dy 

k(y) = b J a(y - y' )a(y' )dy' (9) 

B = b' a~p() -k(ro)po > 0 

C= w(p-tTo)p-t <0 

where the signs of Band C arise due to stability conditions (Amari, 1977; Takeuchi and 
Amari, 1979). In terms of RF size and RF position (4), the general result is: 

B~2 ,(X} = ~(~ + I)At (x) - M2 (x) 

BC~2m{X) = (B- C -+ C~)(~+ I}At (x) + (C- B++(C -2B)~)A2 (x) 
(10) 

where ~ is the difference operator: 

~ f{ x) = f( x + p - t To) - f( x) (11 ) 

3.2.2 Particular Case 

The second order difference equations (l0) are rather opaque. This is partly due to cou­
pling in y caused by the auto-correlation function key): (10) simplifies considerably if very 
narrow stimuli are assumed - a(y)=O(y) (see also Amari, 1980). For periodic boundary 
conditions: 

(12) 

where: 
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m -I P(W (y) = m -I pre (y) + Em -I (y) 

= p-l(y_+ro)+Em-l(y) 
(13) 

and we have used the crude approximation: 

d _() 1 ( 1 _I ) 
dx m x "" t;: ~m x - 2" P ro (14) 

which demands smoothness on the scale of 10 . However, for perturbations like that 
sketched in figure 2, this is sufficient to tell us about the constant regions of MF. (We 
would not expect to be able to model the data in the transition region in any case, as its 
form is too dependent upon fine detail of the model). 

Our results (12) show that the change in RF size of a neuron is simply minus the total 
change in stimulus probability over its RF. Hence RF size decreases where p(y) increases 
and vice versa. Conversely, the change in MF at a given stimulus location is roughly the 
local average change in stimulus probability there. Note that changes in RF size correlate 
inversely with changes in MF. Figure 3 is a sketch of these results for the perturbation of 
figure 2. 

MF RF 

o \ I 
I 

o 

L.J 
y 

Figure 3: Results of perturbation analysis for how behavioural training (figure 2) changes 
RF size and MF respectively, in the case where stimulus width can be neglected. For MF 
- due to the approximation (14) - predictions do not apply near the transitions. 

4. DISCUSSION 
Equations (12) are the results of our model for RF size and MF after area 3b has fully 
adapted to the behavioural task, in the case where stimulus width can be neglected. They 
appear to be fully consistent with the data of Jenkins et al described above: RF size de­
creases in the region of cortex selective for the stimulated body part and the MF for this 
body part increases. Our analysis also makes a specific prediction that goes beyond 
Jenkins et aI's data, directly due to the inverse relationship between changes in RF size 
and those in MF. Within the regions that surrender territory to the entrained finger tips 
(sometimes the face region), for which MF decreases, RF sizes should increase. 

Surprisingly perhaps, these changes in RF size are not due to adaptation of the afferent 
weights s(x,y). The changes are rather due to the adaptive threshold term six). This 
point will be discussed more fully elsewhere. 

A limitation of our analysis is the assumption that the change in stimulus probability is in 
some sense small. Such an approximation may be reasonable for behavioural training but 
seems less so as regards important experimental protocols like amputation or denervation. 
Evidently a more general analysis would be highly desirable. 
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5. CONCLUSION 
We have analysed a system with three interacting features: lateral inhibitory interactions; 
Hebbian adaptivity of afferent synapses and an adaptive firing threshold. Our results in­
dicate that such a system can account for the data of Jenkins et aI, concerning the re­
sponse of adult somatosensory cortex to the changing environmental demands imposed by 
tactile training. The analysis also brings out a prediction of the model, that may be test­
able. 
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