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Abstract 
We report on the development of the modular neural system "SEE­
EAGLE" for the visual guidance of robot pick-and-place actions. 
Several neural networks are integrated to a single system that vi­
sually recognizes human hand pointing gestures from stereo pairs 
of color video images. The output of the hand recognition stage is 
processed by a set of color-sensitive neural networks to determine 
the cartesian location of the target object that is referenced by the 
pointing gesture. Finally, this information is used to guide a robot 
to grab the target object and put it at another location that can 
be specified by a second pointing gesture. The accuracy of the cur­
rent system allows to identify the location of the referenced target 
object to an accuracy of 1 cm in a workspace area of 50x50 cm. In 
our current environment, this is sufficient to pick and place arbi­
trarily positioned target objects within the workspace. The system 
consists of neural networks that perform the tasks of image seg­
mentation, estimation of hand location, estimation of 3D-pointing 
direction, object recognition, and necessary coordinate transforms. 
Drawing heavily on the use of learning algorithms, the functions of 
all network modules were created from data examples only. 

1 Introduction 
The rapidly developing technology in the fields of robotics and virtual reality re­
quires the development of new and more powerful interfaces for configuration and 
control of such devices. These interfaces should be intuitive for the human advisor 
and comfortable to use. Practical solutions so far require the human to wear a 
device that can transfer the necessary information. One typical example is the data 
glove [14, 12]. Clearly, in the long run solutions that are contactless will be much 
more desirable, and vision is one of the major modalities that appears especially 
suited for the realization of such solutions. 

In the present paper, we focus on a still restricted but very important task in robot 
control, the guidance of robot pick-and-place actions by unconstrained human poin­
ting gestures in a realistic laboratory environment. The input of target locations by 
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pointing gestures provides a powerful, very intuitive and comfortable functionality 
for a vision-based man-machine interface for guiding robots and extends previous 
work that focused on the detection of hand location or the discrimination of a small, 
discrete number of hand gestures only [10, 1, 2, 8]. Besides two color cameras, no 
special device is necessary to evaluate the gesture of the human operator. 

A second goal of our approach is to investigate how to build a neural system for 
such a complex task from several neural modules. The development of advanced 
artificial neural systems challenges us with the task of finding architect.ures for the 
cooperat.ion of multiple functional modules such that. part of the structure of the 
overall system can be designed at a useful level of abstraction, but at the same t.ime 
learning can be used to create or fine-tune the functionality of parts of t.he system 
on the basis of suit.able training examples. 

To approach this goal requires to shift the focus from exploring t.he properties of 
single networks to exploring the propert.ies of entire systems of neural networks. 
The work on "mixtures of experts" [3, 4] is one important contribution along these 
lines. While this is a widely applicable and powerful approach, there clearly is 
a need to go beyond the exploration of strictly hierarchical systems and to gain 
experience with architectures t.hat admit more complex types of information flow 
as required e.g. by the inclusion of feat.ures such as control of focal attention or 
reent.rant processing branches. The need for such features arose very naturally in 
the context of the task described above, and in the following sect.ion we will report 
our results wit.h a system architecture that is crucially based on the exploitation of 
such elements. 

2 System architecture 
Our system, described in fig. 1, is situated in a complex laboratory environment. A 
robot arm with manipulator is mounted at one side of a table with several objects 
of different color placed on it. A human operator is positioned at the next side to 
the right of the robot. This scenery is watched by two cameras from the other two 
sides from high above. The cameras yield a stereo color image of t.he scene (images 
10). The operator points with one hand at one of the objects on the table. On the 
basis of the image information, the object is located and the robot grabs it. Then, 
the operator points at another location, where the robot releases the object. 1 

The syst.em consists of several hardware components: a PUMA 560 robot arm with 
six axes and a three-fingered manipulator 2; two single-chip PULNIX color cameras; 
two ANDRox vision boards with software for data acquisition and processing; a 
work space consisting of a table with a black grid on a yellow surface. Robot and 
person refer to the same work space. Bot.h cameras must show both the human 
hand and the table with the objects. Within this constraint, the position of the 
cameras can be chosen freely as long as they yield significantly different views. 

An important prerequisite for the recognition of the pointing direction is the seg­
mentation of the human hand from the background scenery. This task is solved by 
a LLM network (Sl) trained to yield a probability value for each image pixel to 
belong to the hand region. The training is based on t.he local color information. 
This procedure has been investigated in [7]. 

An important feature of the chosen method is the great reliability and robustness 
of both the classification performance and the localization accuracy of the searched 
object. Furthermore, the performance is quite constant over a wide range of image 
resolutions. This allows a fast two-step procedure: First, the images are segmented 
in low resolution (Sl: 11 -+ A1) and the hand position is extracted. Then, a small 

1 In analogy to the sea eagle who watches its prey from high above, shoots down to grab 
the prey, and then flies to a safe place to feed, we nicknamed our system "SEE-EAGLE". 

2Development by Prof. Pfeiffer, TV Munich 
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Fig. 1: System architecture. From two color camera images 10 we extract the hand position 
(11 I> Sl I> A1 (pixel coord.) I> P1 I> cartesian hand coord.). In a subframe centered on 
the hand location (12) we determine the pointing direction (12 I> S2 I> A2 (pixel coord.) I> 

G I> D I> pointing angles). Pointing direction and hand location define a cartesian target 
location that is mapped to image coord. that define the centers of object subframes (10 I> 

P2 I> 13). There we determine the target object (13 I> S3 I> A3) and map the pixel coord. 
of its centers to world coord. (A3 I> P3 I> world target loc.). These coordinates are used 
to guide the robot R to the target object. 
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subframe (12) around the estimated hand position is processed in high resolution 
by another dedicated LLM network (S2: 12 -t A2). For details of the segmentation 
process, refer to [6]. 

The extraction of hand information by LLMs on the basis of Gabor masks has 
already been studied for hand posture [9] and orientation [5]. The method is based 
on a segmented image containing the hand only (A2). This image is filtered by 36 
Gabor masks that are arranged on a 3x3 grid with 4 directions per grid position 
and centered on the hand. The filter kernels have a radius of 10 pixels, the distance 
between the grid points is 20 pixels. The 36 filter responses (G) form the input 
vector for a LLM network (D). Further details of the processing are reported in [6]. 

The network yields the pointing direction of the hand (D: 12 -t G -t pointing 
direction). Together with the hand position which is computed by a parametrized 
self-organizing map ("PSOM", see below and [11, 13]) (P1: Al -t cartesian hand 
position), a (cartesian) target location in the workspace can be calculated. This 
location can be retransformed by the PSOM into pixel coordinates (P2: cartesian 
target location -t target pixel coordinates). These coordinates define the center of 
an "attention region" (13) that is searched for a set of predefined target objects. 
This object recognition is performed by a set of LLM color segmentation networks 
(S3: 13 -t A3), each previously trained for one of the defined targets. A ranking 
procedure is used to determine the target object. The pixel coordinates ofthe target 
in the segmented image are mapped by the PSOM to world coordinates (P3: A3 -t 

cartesian target position). The robot R now moves to above these world coordinates, 
moves vertically down, grabs whatever is there, and moves upward again. Now, the 
system evaluates a second pointing gesture that specifies the place where to place 
the object. This time, the world coordinates calculated on the basis of the pointing 
direction from network D and the cartesian hand location from PSOM PI serve 
directly as target location for the robot. 

For our processing we must map corresponding pixels in the stereo images to car­
tesian world coordinates. For these transformations, training data was generated 
with aid of the robot on a precise sampling grid. We automatically extract the 
pixel coordinates of a LED at the tip of the robot manipulator from both images. 
The seven-dimensional feature vector serves as training input for an PSOM net­
work [11]. By virtue of its capability to represent a transformation in a symmetric, 
"multiway" -fashion, this offers the additional benefit that both the camera-to-world 
mapping and its inverse can be obtained with a single network trained only once on 
a data set of 27 calibration positions of the robot. A detailed description for such 
a procedure can be found in [13]. 

3 Results 

3.1 System performance 

The accuracy of the current system allows to estimate the pointing target to an 
accuracy of 1 ± 0.4 cm (average over N = 7 objects at randomly chosen locations 
in the workspace) in a workspace area of 50x50 cm. In our current environment, 
this is sufficient to pick and place any of the seven defined target objects at any 
location in the workspace. This accuracy can only be achieved if we use the object 
recognition module described in sec. 2. The output of the pointing direction module 
approximates the target location with an considerably lower accuracy of 3.6± 1.6 cm. 

3.2 Image segmentation 
The problem to evaluate these preprocessing steps has been discussed previously [7], 
especially the relation of specifity and sensitivity of the network for the given task. 
As the pointing recognition is based on a subframe centered on the hand center, it 
is very sensitive to deviations from this center so that a good localization accuracy 
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is even more important than the classification rate. The localization accuracy is 
calculated by measuring the pixel distance between the centers determined manu­
ally on the original image and as the center of mass in the image obtained after 
application of the neural network. Table 1 provides quantitative results. 

On the whole) the two-step cascade of LLM networks yields for 399 out of 4 00 images 
an activity image precisely centered on the human hand. Only in one image) the 
first LLM net missed the hand completely) due to a second hand in the image that 
could be clearly seen in this view. This image was excluded from further processing 
and from the evaluation of the localization accuracy. 

Camera A Camera B 
Pixel deviatIOn NRMSE Pixel deViatIOn NRMSE 

Person A 0.8 ± 1.2 0.03 ± 0.06 0.8 ± 2.2 0.03 ± 0.09 
Person H 1.3 ± 1.4 0.06 ± 0.11 2.2 ± 2.8 0.11 ± 0.21 

Table 1: Estimation error of the hand localization on the test set. Absolute error in pixels 
and normalized error for both persons and both camera images. 

3.3 Recognition performance 

One major problem in recognizing human pointing gestures is the variability of these 
gestures and their measurement for the acquisition of reliable training information. 
Different persons follow different strategies where and how to point (fig. 2 (center) 
and (right». Therefore) we calculate this information indirectly. The person is 
told to point at a certain grid position with known world coordinates. From the 
camera images we extract the pixel positions of the hand center and map them to 
world coordinates using the PSOM net (PI in fig . 1). Given these coordinates the 
angles of the intended pointing vector with the basis vectors of the world coordinate 
system can be calculated trigonometrically. These angles form the target vector for 
the supervised training of a LLM network (D in fig. 1). 

After training) the output of the net is used to calculate the point where the pointing 
vector intersects the table surface. For evaluation of the network performance we 
measure the Euclidian distance between this point and the actual grid point where 
the person intended to point at. Fig. 3 (left) shows the mean euclidean error MEE 
of the estimated target position as a function of the number of learning steps. The 
error on the training set can be considerably reduced) whereas on the test set the 
improvement stagnates after some 500 training steps. If we perform even more 
training steps the performance might actually suffer from overfitting. The graph 
compares training and test results achieved on images obtained by two different 
ways of determining the hand center. The "manual" curves show the performance 
that can be achieved if the Gabor masks are manually centered on the hand. For 
the "neuronal)) curves) the center of mass calculated in the fine-segmented and post­
processed subframe was used. This allows us to study the influence of the error of 
the segmentation and localization steps on the pointing recognition. This influence 
is rather small. The MEE increases from 17 mm for the optimal method to 19 mm 
for the neural method) which is hardly visible in practice. 

The curves in fig. 3 (center) are obtained if we apply the networks to images of 
another person. The MEE is considerably larger but a detailed analysis' shows 
that part of this deviation is due to systematic differences in the pointing strategy 
as shown in fig. 2 (right). Over a wide range, the number of nodes used for the 
LLM network has only minor influence on the performance. While obviously the 
performance on the training set can be arbitrarily improved by spending more nodes, 
the differences in the MEE on the test set are negligible in a range of 5 to 15 nodes. 
Using more nodes is problematic as the training data consists of 50 examples only. 
If not indicated otherwise) we use LLM networks with 10 nodes. Further results) 
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Fig. 2: The table grid points can be reconstructed according to the network output. The 
target grid is dotted . Reconstruction of training grid (left) and test grid (center) for one 
person, and of the test grid for another person (right). 
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comparing the pointing recognition based on only one of the camera images, indicate 
that the method works better if the camera takes a lateral view rather than a frontal 
view . All evaluations were done for both persons. The performance was always very 
similar. 

4 Discussion 
While we begin to understand many properties of neural networks at the single 
network level, our insight into principled ways of how to build neural systems is 
still rather limited . Due to the complexity of this task, theoretical progress is 
(and probably will continue to be) very slow. What we can do in the mean time, 
however, is to experiment with different design strategies for neural systems and 
try to "evolve" useful approaches by carefully chosen case studies. 

The current work is an effort along these lines. It is focused on a challenging, 
practically important vision task with a number of generic features that are shared 
with vision tasks for which biological vision systems were evolved. 

One important issue is how to achieve robustness at the different processing levels 
of the system. There are only very limited possibilities to study this issue in si­
mulations, since practically nothing is known about the statistical properties of the 
various sources of error that occur when dealing with real world data. Thus, a real 
implementation that works with actual data is practically the only way to study 
the robustness issue in a realistic fashion. Therefore, the demonstrated integration 
of several functional modules that we had developed previously in more restricted 
settings [7, 6] was a non-trivial test of the feasability of having these functions 
cooperate in a larger, modular system. It also gives confidence that the scaling 
problem can be dealt with successfully if we apply modular neural nets. 

A related and equally important issue was the use of a processing strategy in which 
earlier processing stages incrementally restrict the search space for the subsequent 
stages. Thus, the responsibility for achieving the goal is not centralized in any single 
module and subsequent modules have always the chance to compensate for limited 
errors of earlier stages. This appears to be a generally useful strategy for achieving 
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robustness and for cutting computational costs that is related to the use of "focal 
attention" , which is clearly an important element of many biological vision systems. 

A third important point is the extensive use of learning to build the essential con­
stituent functions of the system from data examples. We are not yet able to train 
the assembled system as a whole. Instead, different modules are trained separately 
and are integrated only later. Still, the experience gained with assembling a com­
plex system via this "engineering-type" of approach will be extremely valuable for 
gradually developing the capability of crafting larger functional building blocks by 
learning methods. 

We conclude that carefully designed experiments with modular neural systems that 
are based on the use of real world data and that focus on similar tasks for which 
also biological neural systems were evolved can make a significant contribution in 
tackling the challenge that lies ahead of us: to develop a reliable technology for the 
construction of large-scale artificial neural systems that can solve complex tasks in 
real world environments. 
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