
Learning Fine Motion by Markov 
Mixtures of Experts 

Marina Meilii 
Dept. of Elec. Eng. and Computer Sci. 

Massachussetts Inst . of Technology 
Cambridge, MA 02139 

mmp@ai.mit.edu 

Michael I. J Ol'dan 
Dept.of Brain and Cognitive Sciences 
Massachussetts Inst. of Technology 

Cambridge, MA 02139 
jordan@psyche.mit .edu 

Abstract 

Compliant control is a standard method for performing fine manip­
ulation tasks, like grasping and assembly, but it requires estimation 
of the state of contact (s.o.c.) between the robot arm and the ob­
jects involved. Here we present a method to learn a model of the 
movement from measured data. The method requires little or no 
prior knowledge and the resulting model explicitly estimates the 
s.o.c. The current s.o.c. is viewed as the hidden state variable of 
a discrete HMM. The control dependent transition probabilities 
between states are modeled as parametrized functions of the mea­
surement. We show that their parameters can be estimated from 
measurements at the same time as the parameters of the movement 
in each s.o.c. The learning algorithm is a variant of the EM proce­
dure. The E step is computed exactly ; solving the M step exactly 
is not possible in general. Here, gradient ascent is used to produce 
an increase in likelihood . 

1 INTRODUCTION 

For a large class of robotics tasks , such as assembly tasks or manipulation of rel­
atively light-weight objects, under appropriate damping of the manipulator the 
dynamics of the objects can be neglected . For these tasks the main difficulty is in 
having the robot achieve its goal despite uncertainty in its position relative to the 
surrounding objects. Uncertainty is due to inaccurate knowledge of the geometric 
shapes and positions of the objects, of their physical properties (surface friction 
coefficients) , or to positioning errors in the manipulator. The standard solution 
to this problem is controlled compliance first introduced in (Mason, 1981). Under 
compliant motion , the task is performed in stages; in each stage the robot arm 
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maintains contact with a selected surface or feature of the environment; the stage 
ends when contact with the feature corresponding to the next stage is made. 

Decomposing the given task into subtasks and specifying each goal or subgoal in 
terms of contact constraints has proven to be a particularly fertile idea, from which 
a fair number of approaches have evolved. But each of them have to face and solve 
the problem of estimating the state of contact (i .e. checking if the contact with 
the correct surface is achieved) , a direct consequence of dealing with noisy mea­
surements . Additionally, most approaches assume prior geometrical and physical 
knowledge of the environment . 

In this paper we present a method to learn a model of the environment which will 
serve to estimate the s.o.c. and to predict future positions from noisy measurements. 
It associates to each state of contact the coresponding movement model (m.m.); that 
is : a relationship between positions, nominal and actual velocities that holds over a 
domain of the position-nominal velocity space. The current m.m. is viewed as the 
hidden state variable of a discrete Hidden Markov Model (HMM) with transition 
probabilities that are parametrized functions of the measurement . We call this 
model Markov Mixture of Experts (MME) and show how its parameters can be 
estimated. In section 2 the problem is defined, section 3 introduces the learning 
algorithm, section 4 presents a simulated example and 5 discusses other aspects 
relevant to the implementation. 

2 REACHABILITY GRAPHS AND MARKOV 
MIXTURES OF EXPERTS 

For any ensemble of objects, the space of all the relative degrees of freedom of the 
objects in the ensemble is called the configuration space (C-space). Every possi­
ble configuration of the ensemble is represented by a unique point in the C-space 
and movement in the real space maps into continuous trajectories in the C-space 
(Lozano-Perez, 1983). The sets of points corresponding to each state of contact 
create a partition over the C-space. Because trajectories are continuous, a point 
can move from a s.o.c. only to a neighboring s.o.c. This can be depicted by a di­
rected graph with vertices representing states of contact and arcs for the possible 
transitions between them, called the reach ability graph . If no constraints on the 
velocities are imposed, then in the reachability graph each s.o.c . is connected to all 
its neighbours. But if the range of velocities is restricted, the connectivity of the 
graph decreases and the connections are generally non-symmetric. Figure 1 shows 
an example of a C-space and its reachability graph for velocities with only positive 
components. 

Ideally, in the absence of noise, the states of contact can be perfectly observed 
and every transition through the graph is thus deterministic. To deal with the 
uncertainty in the measurements, we will attach probabilities to the arcs of the graph 
in the following way: Let us denote by Qi the set of configurations corresponding 
to s.o.c. i and let the movement of a point x with uniform nominal velocity v for a 
time aT be given by x( t + aT) = r (x, v, aT); both x and v are vectors of same 
dimension as the C-space. Now, let x', v' be the noisy measurements of the true 
values x, v, x E Qj and P[x, vlx', v',j] the posterior distribution of (x , v) given the 
measurements and the s.o.c. Then, the probability of transition to a state i from a 
given state j in time T3 can be expressed as: 

P[ilx',v',j] = r P[x,vlx',v',j]dxdv = aij(x',V') (1) 
J{x ,vIXEQj ,rex ,v ,T.)EQ.} 

Defining the transition probability matrix A = [aji]rj=l and assuming measurement 
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Figure 1: A configuration space (a) and its reachability graph (b). The nodes 
represent movement models: C is the free space, A and B are surfaces with static 
and dynamic friction, G represents jamming in the corner. The velocity V has 
positive components. 

noise P[x'lq = i, x E Qd leads to an HMM with output x having a continuous 
emission probability distribution and where the s.o.c. plays the role of a hidden 
state variable. Our main goal is to estimate this model from observed data. 

To give a general statement of the problem we will assume that all the position, 
velocity and force measurements are represented by the input vector u; the output 
vector y of dimensionality ny contains the future position (which our model will 
learn to predict). Observations are made at moments which are integer multiples 
of T$' indexed by t = 0,1, .. , T. If T$ is a constant sampling time the dependency of 
the transition probability on Ts can be ignored. For the purpose of the parameter 
estimation, the possible dependence between u(t) and yet + 1) will also be ignored, 
but it should be considered when the trained model is used for prediction. 

Throughout the following section we will also assume that the input-output de­
pendence is described by a Gaussian conditional density p(y(t)lu(t), q(t) = k) with 
mean f(u(t),(h:) and variance E = (1'21. This is equivalent to assuming that given 
the S.O.c . all noise is additive Gaussian output noise, which is obviously an approx­
imation. But this approximation will allow us to derive certain quantities in closed 
form in an effective way. 

The function feu, (he) is the m.m. associated with state of contact k (with Ok its 
parameter vector) and q is the selector variable representing it . Sometimes we will 
find it useful to partition the domain of a m.m. into subdomains and to represent 
it by a different function (i .e. a different set of parameters Ok) on each of the 
subdomains; then, the name movement model will be extended to them. 

The evolution of q is controlled by a Markov chain which depends on u and of a set 
of parameters W: 

aij(u(t), W) = Pr[q(t + 1) = ilq(t) = j, u(t)] t = 0, 1, ... 

with 
L aij(u, W) = 1 \:Iu, W, j = 1, . .. , m. (2) 
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Figure 2: The Markov Mixture of Experts architecture 

Fig. 2 depicts this architecture. It can be easily seen that this model generalizes the 
mixture of experts (ME) architecture (Jacobs, et al., 1991), to which it reduces in 
the case where aij are independent of j (the columns of A are all equal). It becomes 
the model of (Bengio and Frasconi, 1995) when A and f are neural networks. 

3 AN EM ALGORITHM FOR MME 

To estimate the values of the unknown parameters (J"2, Wk, Ok, k = 1, ... ,m given 
the sequence of observations {(u(t), y(t))};=o, T> 0 the Expectation Maximization 
(EM) algorithm will be used. The states {q(t)};=o play the role of the unobserved 
variables. More about EM can be found in (Dempster et al., 1977) while aspects 
specific to this algorithm are in (Meila and Jordan, 1994). 

The E step computes the probability of each state and of every transition to occur 
at t E {O, ... , T} given the observations and an initial parameter set. This can be 
done efficiently by the forward-backward algorithm (Rabiner and Juang, 1986). 

Pr[q(t) = k I {(u(t), y(t))};=o, W, 0, (J"2] (3) 

Pr[q(t) = j, q(t + 1) = i I {(u(t), y(t))};=o , W, 0, (J"2] 

In the M step the new estimates of the parameters are found by maximizing the 
average complete log-likelihood J, which in our case has the form 

T-l m 

J(O, (J"2, W) = L L eij(t) lnaij(u(t), W)-
t=o i,j=l 

Since each parameter appears in only one term of J the maximization is equivalent 
to: 

T 

0l:ew = argmin L 'n(t) lIy(t) - f( u(t), Ok)11 2 

Ih t=o 
(5) 
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T-l 

wnew = argmax L L~ij(t) In (aij(u(t), w)) 
W t=o ij 

(6) 

1 T m 

ny(T + 1) ~ ~ ''}'k(t) Ily(t) - I(u(t), Ok )11 2 (7) 

There is no general closed form solution to (5) and (6). Their difficulty depends on 
the form of I and aij. The complexity of the m.m. is determined by the geometrical 
shape of the objects' surfaces. For planar surfaces and no rotational degrees of 
freedom I is linear in Ok. Then, (5) becomes a weighted least squares problem 
which can be solved in closed form. 

The functions in A depend both on the movement and of the noise models. Because 
the noise is propagated through non-linearities to the output, an exact form as in 
(1) may be hard to compute analytically. Moreover, a correct noise model for 
each of the possible uncertainties is rarely available (Eberman, 1995). A common 
practical approach is to trade accuracy for computability and to parametrize A in 
a form which is easy to update but deprived of physical meaning. In all the cases 
where maximization cannot be performed exactly, one can resort to Generalized 
EM by merely increasing J. In particular, gradient ascent in parameter space is 
a technique which can replace maximization. This modification will not affect the 
overall convergence of the EM iteration but can significantly reduce its speed. 

Because EM only finds local maxima of the likelihood, the initialization is important. 
If I( u, Ok) correspond to physical movement models , good initial estimates for their 
parameters can be available . The same applies to those components of W which 
bear physical significance. A complementary approach is to reduce the number of 
parameters by explicitly setting the probabilities of impossible transitions to O. 

4 SIMULATION RESULTS 

Simulations have been run on the C-space shown in fig . 1. The inputs were the 
4-dimensional vectors of position (x, y) and nominal velocity (Vx , Vy); the output 
was the predicted position. The coordinate range was [0, 10] and the admissible 
velocities were confined to the upper right quadrant (Vmax 2: Vx , Vy 2: Vmin > 0). 
The restriction in direction implied that the trajectories remain in the coordinate 
domain; it also appeared in the topology of the reachability graph, which has no 
transition to the free space from another state. 

This model was implemented by a MME. The m.m. are linear in the parameters, 
corresponding to the piecewise linearity of the true model. To implement the tran­
sition matrix A we used a bank of gating net-works, one for each s.o.c., consisting 
of 2 layer perceptrons with softmax1 output . There are 230 free parameters in the 
gating networks and 64 in the m.m. 

The training set included N = 5000 data points, in sequences of length T ~ 6, all 
starting in free space. The starting position of the sequence and the nominal veloc­
ities at each step were picked randomly. We found that a more uniform distribution 
of the data points over the states of contact is necessary for successful learning. 
Since this is not expected to happen in applications (where, e.g ., sticking occurs 
less often than sliding) , the obtained models were tested also on a distribution that 

1 () exp(WTx) The softmax function is given by: softmax. x = Z ! T ,i = 1, .. m with Wj , x 
jexp(Wj x) 

vectors of the same dimension. 
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Table 1: Performance of MME versus ME 

(a) Model Prediction Standard Error (MSE) 1/2 

Test set Trammg distributIon Umform V distribution 
noise level 0 .1 .2 .3 .4 0 .1 .2 .3 .4 
MME,(1' =.2 .024 .113 .222 .332 .443 .023 .11 .219 .327 .437 
MME,(1' =0 .003 .114 .228 .343 .456 .010 .109 .218 .327 .435 
ME, (1' = .2 .052 .133 .25 .37 .493 .044 .129 .247 .367 .488 
ME, (1' =0 .047 .131 .25 .37 .49 .034 .126 .245 .366 .488 

(b) State Misclassification Error [%] 
Test set Trammg distribution Umform V distribution 

noise level 0 .1 . ~ .3 .4 U .1 .~ .3 .4 
MME, (1' =.2 5.15 5.2 5.5 5.9 6.4 3.45 3.5 3.8 4.2 4.6 
MME, (1' =0 .78 1.40 2.35 3.25 4.13 .89 1.19 1.70 2.30 2.88 
ME, (1' =.2 6.46 6.60 7.18 7.73 8.13 3.85 3.90 4.38 4.99 5.65 
ME, (1' =0 6.25 6.45 6.98 7.61 8.15 3.84 3.98 4.53 5.05 5.70 

was uniform over velocities (and consequently, highly non-uniform over states of 
contact). Gaussian noise with (1'=0.2 or 0 was added to the (x, y) training data. 

In the M step, the parameters of the gating networks were updated by gradient 
ascent. For the m .m.least squares estimation was used. To ensure that models and 
gates are correctly coupled, initial values for () are chosen around the true values. 
As discussed in the previous section, this is not an unrealistic assumption . W was 
initialized with small random values. Each simulation was run until convergence. 

We used two criteria to measure the performance of the learning algorithm: square 
root of prediction MSE and hidden state misdassificaton. The results are summa­
rized in table 1. The test set size is 50,000 in all cases. Input noise is Gaussian with 
levels between 0 and 0.4. Comparisons were made with a ME model with the same 
number of states. 

The simulations show that the MME architecture is tolerant to input noise, although 
it is not taking it into account explicitly. The MME consistently outperforms the 
ME model in both prediction and state estimation accuracy. 

5 DISCUSSION 

An algorithm to estimate the parameters of composite movement models in the 
presence of noisy measurements has been presented. The algorithm exploits the 
physical decomposability of the problem and the temporal relationship between the 
data points to produce estimates of both the model's parameters and the s.o.c. It 
requires only imprecise initial knowledge about the geometry and physical properties 
of the system. 

Prediction via MME The trained model can be used either as an estimator for 
the state of contact or as a forward model in predicting the next position. For 
the former goal the forward part of the forward-backward algorithm can be used 
to implement a recursive estimator or the methods in (Eberman, 1995) can be 
used. The obtained 'Yk(t) , combined with the outputs of the movement models, will 
produce a predicted output y. An improved posterior estimate of y can be obtained 



Learning Fine Motion by Markov Mixtures of Experts 1009 

by combining f) with the current measurement. 

Scaling issues. Simulations have shown that relatively large datasets are required 
for training even for a small number of states. But, since the states represent 
physical entities, the model will inherit the geometrical locality properties thereof. 
Thus, the number of possible transitions from a state will be bounded by a small 
constant when the number of states grows, keeping the data complexity linear in 
m. 

As a version of EM, our algorithm is batch. It follows that parameters are not 
adapted on line. In particular, the discretization time T& must be fixed prior to 
training. But small changes in Ts can be accounted for by rescaling the velocities 
V. For the other changes, inasmuch as they are local, relearning can be confined to 
those components of the architecture which are affected. 
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