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Abstract

Job-shop scheduling is an important task for manufacturing indus-
tries. We are interested in the particular task of scheduling payload
processing for NASA’s space shuttle program. This paper summa-
rizes our previous work on formulating this task for solution by the
reinforcement learning algorithm 7'D()). A shortcoming of this
previous work was its reliance on hand-engineered input features.
This paper shows how to extend the time-delay neural network
(TDNN) architecture to apply it to irregular-length schedules. Ex-
perimental tests show that this TDNN-7'D(A) network can match
the performance of our previous hand-engineered system. The tests
also show that both neural network approaches significantly out-
perform the best previous (non-learning) solution to this problem
in terms of the quality of the resulting schedules and the number
of search steps required to construct them.

1 Introduction

In Tesauro’s 1992 landmark work on TD-gammon, he showed that the temporal dif-
ference algorithm T'D()) [Sutton, 1988] can learn an excellent evaluation function
for the game of backgammon. This is the most successful application of reinforce-
ment learning to date. The goal of our research is to determine whether this success
can be duplicated in an application of industrial importance: Job-shop scheduling.

We are interested in a particular scheduling problem: space shuttle payload process-
ing for NASA. The goal is to schedule a set of tasks to satisfy a set of temporal and
resource constraints while also seeking to minimize the total duration (makespan) of
the schedule. The best existing method for this task is an iterative repair scheduler
that combines heuristics with simulated annealing [Zweben et al., 1994]. In [Zhang
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and Dietterich, 1995], we report initial results showing that a neural network-based
TD(A) scheduler can out-perform this iterative repair algorithm.

To obtain those results, we hand-engineered a set of input features. An advantage
of neural network algorithms, however, is that they can often learn good “features”
(i.e., hidden units) from more primitive, raw features. The work described in this
paper shows how to apply the time-delay neural network architecture [Lang et
al., 1990, LeCun et al., 1989] to this task to learn from raw features and thereby
eliminate hand-engineering.

In the following sections, we first describe the scheduling task and show how this
task can be formulated for TD(A). We then discuss the problem of schedule rep-
resentation and our network architecture. Following this, we present experiments
on a set of simulated problems and discuss the results. These results show that the
time-delay network using low level features can not only match the performance of
the hand-engineered features—it can actually perform slightly better.

2 The NASA Domain and TD()) for the Task

The NASA space shuttle payload processing (SSPP) domain requires scheduling
the tasks that must be performed to install and test the payloads that are placed
in the cargo bay of the space shuttle. In job-shop scheduling terminology, each
shuttle mission is a job, which has a fixed launch date. Each job consists of a
partially-ordered set of tasks that must be performed. Most of these tasks are “pre-
tasks” that must be performed prior to launch, but some are “post-tasks” that take
place after the shuttle has landed. Each task has a duration and a list of resource
requirements. The resources are grouped into resource pools. For each task and
each type of resource, the required amount of the resource must be obtained from a
single resource pool. A complete schedule must specify the start time of each task
and the resource pool by which each resource requirement of each task is satisfied. A
key goal of the scheduling system is to minimize the total duration of the schedule.
This is much more challenging than simply finding a feasible schedule.

Zweben et al. [1994] developed the following iterative repair method for solving
this scheduling problem. First, a critical path schedule is constructed by working
backward and forward from the launch and landing dates; resource constraints
are ignored. This critical-path schedule serves as the starting state for a state-
space search. In each state of this problem space, there are two possible operators
that can be applied. The REASSIGN-POOL operator changes the pool assignment
for one of the resource requirements of a task. It is only applied when the pool
reassignment would allow the resource requirement to be successfully satisfied. The
MOVE operator moves a task to a different time and then reschedules all of the
temporal dependents of the task using the critical path method (leaving the resource
pool assignments of the dependents unchanged). The MOVE operator is only applied
to move a task to the first earlier or the first later time at which the violated resource
requirement can be satisfied. The iterative repair method uses a combination of
three heuristics to choose a task to repair. It prefers to move the task that (a)
requires an amount of resource nearly equal to the amount that is over allocated,
(b) has few temporal dependents, and (c) needs to be moved only a short distance to
satisfy the resource request. The overall control structure of the algorithm applies
simulated annealing to minimize a designated cost function. The search continues
until a schedule is found that has no constraint violations.

To view the scheduling problem as a reinforcement learning problem, we must de-
scribe the problem space and the reinforcement function. We employ the same
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problem space as Zweben et al. The starting state sp is the critical path schedule
as discussed above. We define the reinforcement function R(s) to give a reinforce-
ment of —0.001 for each schedule s that still contains constraint violations. This
assesses a small penalty for each scheduling action, and it is intended to encourage
reinforcement learning to prefer actions that quickly find a good schedule. For any
schedule s that is free of violations, the reinforcement is the negative of the resource
dilation factor, —RDF'(s,sg). The RDF attempts to provide a scale-independent
measure of the length of the schedule, and this final reinforcement is intended to
encourage reinforcement learning to find short final schedules.

The RDF is defined as follows. Let capacity(i) be the capacity of resource type
i—that is, the combined capacity of all resource pools of resource type i. At each
time ¢ in the schedule, let u(Z,t) be the current utilization of resources of type i.
We define the resource utilization indez RUI(i,1) for resource type ¢ at time ¢ to be

RUI(i,t) = ma,x{l, E%} If the resource is not over-allocated, RUI(4,t) is

1; otherwise 1t is the fraction of overallocation. The total resource utilization indez
(TRUT) for a schedule of length [ is the sum of the resource utilization index taken

over all n resources and all [ times: TRUI = I, Z::I RUI(¢,t). Given these

definitions, the resource dilation factor is defined as RDF(s, sg) = %%%%%.

Now that we have specified how to view repair-based scheduling as a reinforcement
learning problem, we turn our attention to the learning algorithm. Suppose at a
given point in the learning process we have developed policy #, which says that in
state s the action to select is @ = m(s). We can define an associated function fy,
called the walue function, such that fr(s) tells the cumulative reward that we will

receive if we follow policy 7 from state s onward. Formally, fx(s) = ZJN:D R(sj4+1),
where N is the number of steps until a conflict-free schedule is found.

As in most reinforcement learning work, we will attempt to learn the value function
of the optimal policy 7*, denoted f* = fr«, rather than directly learning #*. Once
we have learned this optimal value function, we can transform it into the optimal
policy via a simple one-step lookahead search. To learn the value function, we apply
TD(X) as a form of value iteration. T'D()) is applied online to the sequences of
states and reinforcements that result from choosing actions according to the current
estimated value function, f. At each state s during learning, we conduct a one-step
lookahead search using the current estimated value function f to evaluate the states
resulting from applying each possible operator. We then select the action that
maximizes the predicted value of the resulting state s’. After applying this action
and receiving the reward, we update our estimate of f to reflect the difference

between the value of f(s) and the more informed value R(s') + f(s').

3 Schedule Representation and Network Design

The main challenge for designing a schedule representation is that virtually all
methods for learning evaluation functions can only be applied to fixed-length vectors
of features. However, the length of schedules varies depending on the number of
tasks and the complexity of their temporal and resource constraints. In our previous
work, we hand-engineered a fixed set of features that summarized the structure
of the schedule. We included such features as the RDF of the current schedule,
the mean and standard deviation of the unused resource capacity of each resource
pool (negative if the pool is over-allocated), the mean and standard deviation of
the slack times (idle times between temporal dependents), and so on. However,
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Figure 1: The definition of “blocks”.

hand-engineering increases the cost of creating a new application and reduces the
autonomy of the learning system. Therefore, we wish to develop a method that can
automatically learn good input features.

The time-delay neural network [Lang et al., 1990] has proved to be very effective in
learning good position-independent features in visual- and speech-recognition tasks.
In speech recognition, it is applied to convert an input sequence of speech frames
into a “hidden sequence” of extracted features. A classifier then walks along this
hidden sequence and classifies each position in the sequence. The mapping from
a particular position in the input sequence to a particular position in the hidden
sequence is performed by a “kernel” neural network, which is scanned along the
input sequence. It examines a sliding window of adjacent positions in the sequence.
The kernel network has a single set of weights that are applied at all positions in
the sequence, although each position may have its own bias weight.

To apply this architecture to scheduling, we must solve two problems. First, we
must define what a “position” means in the schedule. Second, we must decide how
to use the “hidden sequence” of computed features.

To define “positions”, we subdivide the schedule into a sequence of “blocks.” Each
block is a maximal time interval in which the current tasks and resource assignments
do not change (see Figure 1). For each block, we can compute primitive features
such as the number of resource units available in each pool, and whether each pool
is over-allocated. We also say that a task is “inside” a block if that task starts at the
beginning of the block. Given this definition, we can compute additional primitive
features of the tasks inside the block: minimum and average slack time, number of
dependents, and number of tasks inside the block. If there are multiple tasks inside
a block, we compute the average values of these features. A total of 12 primitive
features are computed for each block.

We then define five kernels, each of which examines a single “current block” and
computes a hidden “feature” from this block. These five kernels are scanned along
the entire schedule, and they create a derived sequence containing five “hidden
features” for each block. How should this derived sequence be processed to compute
the estimated value function?

One approach would be to scan a network along the hidden sequence and take the
maximum value output by that network. However, because our goal is to estimate
the RDF of the final schedule, it seems wiser to view the kernels as learning to
recognize “bad conflicts” and “opportunities”. By summing (or averaging) the
“hidden features”, the network can effectively count the number of opportunities
and conflicts and estimate how much more the RDF will change before the conflicts
are eliminated. Hence, we take the following approach.

The sequence of “hidden features” is split into thirds. Within each third, five
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features are computed by finding the mean value of each of the five hidden features
over the blocks in this third. This gives a total of 15 features. These features, along
with two other “global” features—the RDF of the current schedule and the resource
utilization of the starting schedule—are input to a network having 40 hidden units.
The output of that network is taken as the estimated value for the current schedule.

To recap, the network has three hidden layers named H1, H2, and H3. Layer H1
has 5 kernels (each with 12 weights). There are 15 biases, one for each feature
in each third of the schedule. So H1 has a total of 75 parameters. H2 has 17
units; 15 of these are hidden units (3 sets of 5) averaged from H1 and 2 of these
are the two global input features. H2 has no adjustable parameters. H3 has 40
hidden units fully connected to H2, for a total of 720 parameters. The output
layer has 8 units fully connected to H3 and encoding the predicted RDF using the
technique of overlapping gaussian ranges [Pomerleau, 1991]. The output layer has
328 (= 8:(40 + 1)) parameters. Therefore, this net has a total of 1123 parameters.
All units in H1, H3, and the output layer use sigmoidal transfer functions.

4 Experiments

We constructed an artificial problem set based on specifications for the NASA SSPP
problem. Space constraints do not permit a complete description of the problems
or the training procedure (see [Zhang and Dietterich, 1995] for full details). 100
scheduling problems were generated. These were subdivided into 50 problems for fi-
nal testing, 20 problems for validation testing, and three training sets of 10 problems
each. An ensemble of 6 networks was constructed by training a separate network
for each of these three training sets and for A = 0.2 and A = 0.7. Training was
monitored by testing on the validation set every 100 epochs. Training was halted
when the validation test showed no further change. For each of the 6 networks,
the final set of weights and the set of weights giving the best validation score were
retained for a total of 12 networks.

Figure 2 compares the test set performance of six different scheduling configura-
tions. GITDN is the mean test set RDF of the best single TDNN T'D()) network
(as determined by validation set performance). G12TDN is the mean RDF of all
12 learned networks. Analogously, G1N is the best single network trained using our
hand-engineering features and G12N is the mean RDF of 12 hand-engineered net-
works. IR-V and IR-RDF are Zweben’s iterative repair algorithms using the number
of violations and the RDF (respectively) as the error function to be minimized via
simulated annealing. From this we can see that GITDN produces schedules with
better average RDF than any of the other methods. In particular the F test shows
that it is significantly better than all other algorithms except G12TDN.

Figure 3 compares the mean number of repairs required by each algorithm to find
a solution. For the IR algorithms only repairs accepted by simulated annealing
were counted. This shows that the neural network methods have learned very good
evaluation functions—they are able to find a good solution much more directly
than the simulated annealing methods. According to the F tests, the networks
with engineered features are slightly better than the TDNN networks, but all of the
networks are significantly better than simulated annealing,.

A shortcoming of these figures, however, is that they only record the mean results
of single runs. Better results are typically obtained from simulated annealing if the
algorithm is run many times and the best solution retained. Figures 4 and 5 show
the mean RDF of the best schedule as a function of the number of schedule repairs
and CPU time expended. IR-V and IR-RDF were each run 50 times; G12N and
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G12TDN show the results of running each of the 12 networks once on each test
problem. GIN and G1TDN show the results of running the best single net 10 times
on each test problem. Because evaluation function ties are broken randomly, these
10 repetitions usually generate different schedules. Each time a network finds an
improved solution to a problem, a point is plotted on the graph.

The graphs show that the learned networks clearly out-perform Zweben’s IR al-
gorithms. Figure 4 shows that the networks perform many fewer repairs to find
schedules of the same quality as the IR algorithms. Note that the horizontal axis is
plotted on a log scale—the networks maintain a constant factor advantage over IR.
For a schedule of a year’s duration, this improvement would translate into several
days (and hundreds of thousands of dollars) saved.

Ultimately, G12TDN does slightly better than G12N. After 12 iterations and 21,676
repairs, G12TDN produced solutions with an average RDF of 1.196. By comparison,
G 12N performs 19,406 repairs and produces an average RDF of 1.202.

Figure 5 illustrates a problem with the neural network approach: the networks
spend more CPU time selecting each repair. This reduces the differences between
the methods. G12N exhibits the best tradeoff between CPU time and schedule
quality, although G12TDN attains the best final schedule quality.

The major CPU cost of G12TDN is the cost of breaking the schedule into blocks
and convolving the kernel networks with the blocks. There are many opportunities
to make this more efficient by taking advantage of the fact that each repair changes
only parts of the schedule, and therefore, only parts of the neural network calculation
need to be updated.

5 Conclusions

This paper has shown how to apply temporal difference learning to job shop schedul-
ing problems by formulating them as iterative repair problem spaces. The paper
has also presented a modification of the TDNN architecture appropriate for schedul-
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ing problems. The combined TDNN-T'D(A) architecture can learn very powerful
search heuristics that significantly out-perform all previous algorithms in terms of
the quality of the resulting schedules. The TDNN architecture achieves this high
performance with much less “feature-engineering” than our previous neural network
approach. This demonstrates once again the superior ability of neural networks to
learn useful higher-level features from raw input features.

Both of our neural-net-based methods demonstrate that the impressive performance
of Tesauro’s TD-gammon system can carry over to an important industrial appli-
cation. Temporal difference learning is able to learn a very effective evaluation
function for job shop scheduling. Using this function, a scheduler can find better
schedules and find them in fewer search steps than the best previous methods.
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