
From Isolation to Cooperation:
An Alternative View of a System of Experts

Stefan Schaal:!:* Christopher C. Atkeson:!:
sschaal@cc.gatech.edu cga@cc.gatech.edu

http://www.cc.gatech.eduifac/Stefan.Schaal http://www.cc.gatech.eduifac/Chris.Atkeson

+College of Computing, Georgia Tech, 801 Atlantic Drive, Atlanta, GA 30332-0280
* A TR Human Infonnation Processing, 2-2 Hikaridai, Seiko-cho, Soraku-gun, 619-02 Kyoto

Abstract
We introduce a constructive, incremental learning system for regression
problems that models data by means of locally linear experts. In contrast
to other approaches, the experts are trained independently and do not
compete for data during learning. Only when a prediction for a query is
required do the experts cooperate by blending their individual predic­
tions. Each expert is trained by minimizing a penalized local cross vali­
dation error using second order methods. In this way, an expert is able to
find a local distance metric by adjusting the size and shape of the recep­
tive field in which its predictions are valid, and also to detect relevant in­
put features by adjusting its bias on the importance of individual input
dimensions. We derive asymptotic results for our method. In a variety of
simulations the properties of the algorithm are demonstrated with respect
to interference, learning speed, prediction accuracy, feature detection,
and task oriented incremental learning.

1. INTRODUCTION
Distributing a learning task among a set of experts has become a popular method in compu­
tationallearning. One approach is to employ several experts, each with a global domain of
expertise (e.g., Wolpert, 1990). When an output for a given input is to be predicted, every
expert gives a prediction together with a confidence measure. The individual predictions
are combined into a single result, for instance, based on a confidence weighted average.
Another approach-the approach pursued in this paper-of employing experts is to create
experts with local domains of expertise. In contrast to the global experts, the local experts
have little overlap or no overlap at all. To assign a local domain of expertise to each expert,
it is necessary to learn an expert selection system in addition to the experts themselves.
This classifier determines which expert models are used in which part of the input space.
For incremental learning, competitive learning methods are usually applied. Here the ex­
perts compete for data such that they change their domains of expertise until a stable con­
figuration is achieved (e.g., Jacobs, Jordan, Nowlan, & Hinton, 1991). The advantage of
local experts is that they can have simple parameterizations, such as locally constant or lo­
cally linear models. This offers benefits in terms of analyzability, learning speed, and ro­
bustness (e.g., Jordan & Jacobs, 1994). For simple experts, however, a large number of ex­
perts is necessary to model a function. As a result, the expert selection system has to be
more complicated and, thus, has a higher risk of getting stuck in local minima and/or of
learning rather slowly. In incremental learning, another potential danger arises when the
input distribution of the data changes. The expert selection system usually makes either
implicit or explicit prior assumptions about the input data distribution. For example, in the
classical mixture model (McLachlan & Basford, 1988) which was employed in several lo­
cal expert approaches, the prior probabilities of each mixture model can be interpreted as

606 S. SCHAAL. C. C. ATKESON

the fraction of data points each expert expects to experience. Therefore, a change in input
distribution will cause all experts to change their domains of expertise in order to fulfill
these prior assumptions. This can lead to catastrophic interference.

In order to avoid these problems and to cope with the interference problems during incre­
mental learning due to changes in input distribution, we suggest eliminating the competi­
tion among experts and instead isolating them during learning. Whenever some new data is
experienced which is not accounted for by one of the current experts, a new expert is cre­
ated. Since the experts do not compete for data with their peers, there is no reason for them
to change the location of their domains of expertise. However, when it comes to making a
prediction at a query point, all the experts cooperate by giving a prediction of the output
together with a confidence measure. A blending of all the predictions of all experts results
in the final prediction. It should be noted that these local experts combine properties of
both the global and local experts mentioned previously. They act like global experts by
learning independently of each other and by blending their predictions, but they act like lo­
cal experts by confining themselves to a local domain of expertise, i.e., their confidence
measures are large only in a local region.

The topic of data fitting with structurally simple local models (or experts) has received a
great deal of attention in nonparametric statistics (e.g., Nadaraya, 1964; Cleveland, 1979;
Scott, 1992, Hastie & Tibshirani, 1990). In this paper, we will demonstrate how a non­
parametric approach can be applied to obtain the isolated expert network (Section 2.1),
how its asymptotic properties can be analyzed (Section 2.2), and what characteristics such
a learning system possesses in terms of the avoidance of interference, feature detection,
dimensionality reduction, and incremental learning of motor control tasks (Section 3).

2. RECEPTIVE FIELD WEIGHTED REGRESSION

This paper focuses on regression problems, i.e., the learning of a map from 9tn ~ 9tm •

Each expert in our learning method, Receptive Field Weighted Regression (RFWR), con­
sists of two elements, a locally linear model to represent the local functional relationship,
and a receptive field which determines the region in input space in which the expert's
knowledge is valid. As a result, a given data set will be modeled by piecewise linear ele­
ments, blended together. For 1000 noisy data points drawn from the unit interval of the
function z == max[exp(-10x2),exp(-50l),1.25exp(-5(x2 + l)], Figure 1 illustrates an
example of function fitting with RFWR. This function consists of a narrow and a wide
ridge which are perpendicular to each other, and a Gaussian bump at the origin. Figure 1 b
shows the receptive fields which the system created during the learning process. Each ex­
perts' location is at the center of its receptive field, marked by a $ in Figure 1 b. The recep-

0 . 5
0

-0.5

-1
1.5

,1

10. 5%

0

I
1- 0 .5

1

0

- 0 .5

-1 x
(a)

1.5

0.5

,., 0

-0.5

-1

-1.5
-1.5

(b)
-1 -0.5 o

x
0.5 1.5

Figure 1: (a) result of function approximation with RFWR. (b) contour lines of 0.1 iso-activation of
each expert in input space (the experts' centers are marked by small circles).

From Isolation to Cooperation: An Alternative View of a System of Experts 607

tive fields are modeled by Gaussian functions, and their 0.1 iso-activation lines are shown
in Figure 1 b as well. As can be seen, each expert focuses on a certain region of the input
space, and the shape and orientation of this region reflects the function's complexity, or
more precisely, the function's curvature, in this region. It should be noticed that there is a
certain amount of overlap among the experts, and that the placement of experts occurred on
a greedy basis during learning and is not globally optimal. The approximation result
(Figure 1 a) is a faithful reconstruction of the real function (MSE = 0.0025 on a test set, 30
epochs training, about 1 minute of computation on a SPARC1O). As a baseline comparison,
a similar result with a sigmoidal 3-layer neural network required about 100 hidden units
and 10000 epochs of annealed standard backpropagation (about 4 hours on a SPARC1O).

2.1 THE ALGORITHM

li'Iear

. .•... '. ~"" " Galng Unrt

WeighBd' / ~:~~ ConnectIOn

Average centered at e

Output y,

Figure 2: The RFWR network

RFWR can be sketched in network form as
shown in Figure 2. All inputs connect to all ex­
pert networks, and new experts can be added as
needed. Each expert is an independent entity. It
consists of a two layer linear subnet and a recep­
tive field subnet. The receptive field subnet has a
single unit with a bell-shaped activation profile,
centered at the fixed location c in input space.
The maximal output of this unit is "I" at the cen­
ter, and it decays to zero as a function of the dis­
tance from the center. For analytical convenience,
we choose this unit to be Gaussian:

(1)

x is the input vector, and D the distance metric, a positive definite matrix that is generated
from the upper triangular matrix M. The output of the linear subnet is:

A Tb b -Tf3 y=x + o=x (2)

The connection strengths b of the linear subnet and its bias bO will be denoted by the d-di­

mensional vector f3 from now on, and the tilde sign will indicate that a vector has been
augmented by a constant "I", e.g., i = (x T , Il . In generating the total output, the receptive
field units act as a gating component on the output, such that the total prediction is:

(3)

The parameters f3 and M are the primary quantities which have to be adjusted in the learn­
ing process: f3 forms the locally linear model, while M determines the shape and orienta­
tion of the receptive fields . Learning is achieved by incrementally minimizing the cost
function:

(4)

The first term of this function is the weighted mean squared cross validation error over all
experienced data points, a local cross validation measure (Schaal & Atkeson, 1994). The
second term is a regularization or penalty term. Local cross validation by itself is consis­
tent, i.e., with an increasing amount of data, the size of the receptive field of an expert
would shrink to zero. This would require the creation of an ever increasing number of ex­
perts during the course of learning. The penalty term introduces some non-vanishing bias
in each expert such that its receptive field size does not shrink to zero. By penalizing the
squared coefficients of D, we are essentially penalizing the second derivatives of the func­
tion at the site of the expert. This is similar to the approaches taken in spline fitting

608 S. SCHAAL, C. C. A TI(ESON

(deBoor, 1978) and acts as a low-pass filter: the higher the second derivatives, the more
smoothing (and thus bias) will be introduced. This will be analyzed further in Section 2.2.

The update equations for the linear subnet are the standard weighted recursive least squares
equation with forgetting factor A (Ljung & SOderstrom, 1986):

1 (pn- -Tpn) f3 n+1 =f3n+wpn+lxe wherepn+1 =_ pn_ xx ande =(y-xT f3n)
cv' A Ajw + xTpnx cv

(5)

This is a Newton method, and it requires maintaining the matrix P, which is size
0.5d x (d + 1) . The update of the receptive field subnet is a gradient descent in J:

Mn+l=Mn- a dJ!aM (6)

Due to space limitations, the derivation of the derivative in (6) will not be explained here.
The major ingredient is to take this derivative as in a batch update, and then to reformulate
the result as an iterative scheme. The derivatives in batch mode can be calculated exactly
due to the Sherman-Morrison-Woodbury theorem (Belsley, Kuh, & Welsch, 1980; At­
keson, 1992). The derivative for the incremental update is a very good approximation to
the batch update and realizes incremental local cross validation.

A new expert is initialized with a default M de! and all other variables set to zero, except the

matrix P. P is initialized as a diagonal matrix with elements 11 r/, where the ri are usually
small quantities, e.g., 0.01. The ri are ridge regression parameters. From a probabilistic
view, they are Bayesian priors that the f3 vector is the zero vector. From an algorithmic
view, they are fake data points of the form [x = (0, ... , '12 ,o, ... l,y = 0] (Atkeson, Moore, &
Schaal, submitted). Using the update rule (5), the influence of the ridge regression pa­
rameters would fade away due to the forgetting factor A. However, it is useful to make the
ridge regression parameters adjustable. As in (6), rj can be updated by gradient descent:

1'n+1 = 1'n - a aJ/ar
I I I (7)

There are d ridge regression parameters, one for each diagonal element of the P matrix. In
order to add in the update of the ridge parameters as well as to compensate for the forget­
ting factor, an iterative procedure based on (5) can be devised which we omit here. The
computational complexity of this update is much reduced in comparison to (5) since many
computations involve multiplications by zero.

Initialize the RFWR network. with no expert;
For every new training sample (x,y):

a) For k= I to #experts:

b)

c)

d)

e)

end;

- calculate the activation from (I)
- update the expert's parameters according to (5), (6), and (7)
end;
Ir no expert was activated by more than W gen :

- create a new expert with c=x
end;
Ir two experts are acti vated more than W pn .. ~

- erase the expert with the smaller receptive field
end;
calculate the mean, err ""an' and standard de viation errslIl of the
incrementally accumulated error er,! of all experts;
For k.= I to #experts:

Ir (Itrr! - err_I> 9 er'Sld) reinitialize expert k with M = 2 • Mdef
end;

In sum, a RFWR expert consists of
three sets of parameters, one for
the locally linear model, one for
the size and shape of the receptive
fields, and one for the bias. The
linear model parameters are up­
dated by a Newton method, while
the other parameters are updated
by gradient descent. In our imple­
mentations, we actually use second
order gradient descent based on
Sutton (1992), since, with minor

extra effort, we can obtain estimates of the second derivatives of the cost function with re­
spect to all parameters. Finally, the logic of RFWR becomes as shown in the pseudo-code
above. Point c) and e) of the algorithm introduce a pruning facility. Pruning takes place ei­
ther when two experts overlap too much, or when an expert has an exceptionally large
mean squared error. The latter method corresponds to a simple form of outlier detection.
Local optimization of a distance metric always has a minimum for a very large receptive
field size. In our case, this would mean that an expert favors global instead of locally linear
regression. Such an expert will accumulate a very large error which can easily be detected

From Isolation to Cooperation: An Alternative View of a System of Experts 609

in the given way. The mean squared error term, err, on which this outlier detection is
based, is a bias-corrected mean squared error, as will be explained below.

2.2 ASYMPTOTIC BIAS AND PENALTY SELECTION

The penalty term in the cost function (4) introduces bias. In order to assess the asymptotic
value of this bias, the real function f(x) , which is to be learned, is assumed to be repre­
sented as a Taylor series expansion at the center of an expert's receptive field. Without loss
of generality, the center is assumed to be at the origin in input space. We furthermore as­
sume that the size and shape of the receptive field are such that terms higher than 0(2) are
negligible. Thus, the cost (4) can be written as:

J ~ (1w(f. +fTX+~XTFX-bo -bTx Y dx)/(1 wdx)+r~Dnm (8)

where fo' f, and F denote the constant, linear, and quadratic terms of the Taylor series
expansion, respectively. Inserting Equation (1), the integrals can be solved analytically af­
ter the input space is rotated by an orthonormal matrix transforming F to the diagonal ma­
trix F'. Subsequently, bo' b, and D can be determined such that J is minimized:

0.25 () ~ b~ = fa + bias = fa + ~075 ~ sgn(F:')~IF;,:I, b' = f, D:: = (2r)2
(9)

This states that the linear model will asymptotically acquire the correct locally linear
model, while the constant term will have bias proportional to the square root of the sum of
the eigenvalues of F, i.e., the F:n • The distance metric D, whose diagonalized counterpart
is D', will be a scaled image of the Hessian F with an additional square root distortion.
Thus, the penalty term accomplishes the intended task: it introduces more smoothing the
higher the curvature at an expert's location is, and it prevents the receptive field of an ex­
pert shrinking to zero size (which would obviously happen for r ~ 0). Additionally,
Equation (9) shows how to determine rfor a given learning problem from an estimate of
the eigenvalues and a permissible bias. Finally, it is possible to derive estimates of the bias
and the mean squared error of each expert from the current distance metric D:

biasesl = ~0.5r IJeigenvalues(D)l.; en,,~, = r L D;m (10)
n.m

The latter term was incorporated in the mean squared error, err, in Section 2.1. Empirical
evaluations (not shown here) verified the validity of these asymptotic results.

3. SIMULA TION RESULTS
This section will demonstrate some of the properties of RFWR. In all simulations, the
threshold parameters of the algorithm were set to e = 3.5, w prune = 0.9, and w min = 0.1.

These quantities determine the overlap of the experts as well as the outlier removal thresh­
old; the results below are not affected by moderate changes in these parameters.

3.1 AVOIDING INTERFERENCE

In order to test RFWR's sensitivity with respect to changes in input data distribution, the
data of the example of Figure 1 was partitioned into three separate training sets
1; = {(x, y, z) 1-1.0 < x < -O.2} , 1; = {(x, y, z) 1-0.4 < x < OA}, 1; = {(x, y, z) I 0.2 < x < 1.0} .
These data sets correspond to three overlapping stripes of data, each having about 400 uni­
formly distributed samples. From scratch, a RFWR network was trained first on I; for 20
epochs, then on T2 for 20 epochs, and finally on 1; for 20 epochs. The penalty was chosen
as in the example of Figure 1 to be r = I.e - 7 , which corresponds to an asymptotic bias of

610 S. SCHAAL, C. C. ATKESON

0.1 at the sharp ridge of the function. The default distance metric D was 50*1, where I is
the identity matrix. Figure 3 shows the results of this experiment. Very little interference
can be found. The MSE on the test set increased from 0.0025 (of the original experiment of
Figure 1) to 0.003, which is still an excellent reconstruction of the real function.

y

0 .5

-0 . 5

- 0 . 5

(a) (b) (c) -1

Figure 3: Reconstructed function after training on (a) 7;, (b) then ~,(c) and finally 1;.

3.2 LOCAL FEATURE DETECTION

The examples of RFWR given so far did not require ridge regression parameters. Their im­
portance, however, becomes obvious when dealing with locally rank deficient data or with
irrelevant input dimensions. A learning system should be able to recognize irrelevant input
dimensions. It is important to note that this cannot be accomplished by a distance metric.
The distance metric is only able to decide to what spatial extent averaging over data in a
certain dimension should be performed. However, the distance metric has no means to ex­
clude an input dimension. In contrast, bias learning with ridge regression parameters is able
to exclude input dimensions. To demonstrate this, we added 8 purely noisy inputs
(N(0,0.3)) to the data drawn from the function of Figure 1. After 30 epochs of training on a
10000 data point training set, we analyzed histograms of the order of magnitude of the
ridge regression parameters in all 100bias input dimensions over all the 79 experts that had
been generated by the learning algorithm. All experts recognized that the input dimensions
3 to 8 did not contain relevant information, and correctly increased the corresponding ridge
parameters to large values. The effect of a large ridge regression parameter is that the asso­
ciated regression coefficient becomes zero. In contrast, the ridge parameters of the inputs 1,
2, and the bias input remained very small. The MSE on the test set was 0.0026, basically
identical to the experiment with the original training set.

3.3 LEARNING AN INVERSE DYNAMICS MODEL OF A ROBOT ARM

Robot learning is one of the domains where incremental learning plays an important role. A
real movement system experiences data at a high rate, and it should incorporate this data
immediately to improve its performance. As learning is task oriented, input distributions
will also be task oriented and interference problems can easily arise. Additionally, a real
movement system does not sample data from a training set but rather has to move in order
to receive new data. Thus, training data is always temporally correlated, and learning must
be able to cope with this. An example of such a learning task is given in Figure 4 where a
simulated 2 DOF robot arm has to learn to draw the figure "8" in two different regions of
the work space at a moderate speed (1.5 sec duration). In this example, we assume that the
correct movement plan exists, but that the inverse dynamics model which is to be used to
control this movement has not been acquired. The robot is first trained for 10 minutes (real
movement time) in the region of the lower target trajectory where it performs a variety of
rhythmic movements under simple PID control. The initial performance of this controller is
shown in the bottom part of Figure 4a. This training enables the robot to learn the locally
appropriate inverse dynamics model, a ~6 ~ ~2 continuous mapping. Subsequent per-

From Isolation to Cooperation: An Alternative View of a System of Experts 611

0.5

0.' tGralMy

0.'

0.2 ~ 8
0.1

~t Z 8 8 ..,.
~.

·0.4

~.5
(a) (b) (0)

0 0.1 0.2 0.3 0.4 0.!5

Figure 4: Learning to draw the figure "8" with a 2-joint
arm: (a) Performance of a PID controller before learn­
ing (the dimmed lines denote the desired trajectories,
the solid lines the actual performance); (b) Perfor­
mance after learning using a PD controller with feed­
forward commands from the learned inverse model; (c)
Performance of the learned controller after training on
the upper "8" of (b) (see text for more explanations).

formance using this inverse model for
control is depicted in the bottom part
of Figure 4b. Afterwards, the same
training takes place in the region of the
upper target trajectory in order to ac­
quire the inverse model in this part of
the world. The figure "8" can then
equally well be drawn there (upper
part of Figure 4a,b). Switching back to
the bottom part of the work space
(Figure 4c), the first task can still be
performed as before. No interference
is recognizable. Thus, the robot could
learn fast and reliably to fulfill the two
tasks. It is important to note that the
data generated by the training move­
ments did not always have locally full
rank. All the parameters of RFWR
were necessary to acquire the local in­
verse model appropriately. A total of

39 locally linear experts were generated.

4. DISCUSSION
We have introduced an incremental learning algorithm, RFWR, which constructs a network
of isolated experts for supervised learning of regression tasks. Each expert determines a lo­
cally linear model, a local distance metric, and local bias parameters by incrementally
minimizing a penalized local cross validation error. Our algorithm differs from other local
learning techniques by entirely avoiding competition among the experts, and by being
based on nonparametric instead of parametric statistics. The resulting properties of RFWR
are a) avoidance of interference in the case of changing input distributions, b) fast incre­
mental learning by means of Newton and second order gradient descent methods, c) ana­
lyzable asymptotic properties which facilitate the selection of the fit parameters, and d) lo­
cal feature detection and dimensionality reduction. The isolated experts are also ideally
suited for parallel implementations. Future work will investigate computationally less
costly delta-rule implementations of RFWR, and how well RFWR scales in higher dimen­
sions.

5. REFERENCES
Atkeson, C. G., Moore, A. W. , & Schaal, S.
(submitted). "Locally weighted learning." Artificial In­
telligence Review.
Atkeson, C. G. (1992). "Memory-based approaches to
approximating continuous functions." In: Casdagli, M.,
& Eubank, S. (Eds.), Nonlinear Modeling and Fore­
casting, pp.503-521. Addison Wesley.
Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Re­
gression diagnostics: Identifying influential data and
sources ofcollinearity. New York: Wiley.
Cleveland, W. S. (1979). "Robust locally weighted re­
gression and smoothing scatterplots." J. American Stat.
Association, 74, pp.829-836.
de Boor, C. (1978). A practical guide to splines. New
York: Springer.
Hastie, T. J., & Tibshirani, R. J. (1990). Generalized
additive models. London: Chapman and Hall.
Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton,
G. E. (1991). "Adaptive mixtures of local experts."
Neural Computation, 3, pp.79-87.

Jordan, M. I., & Jacobs, R. (1994). "Hierarchical mix­
tures of experts and the EM algorithm." Neural Com­
putation, 6, pp.79-87.
Ljung, L., & S_derstr_m, T. (1986). Theory and prac­
tice of recursive identification. Cambridge, MIT Press.
McLachlan, G. J., & Basford, K. E. (1988). Mixture
models . New York: Marcel Dekker.
Nadaraya, E. A. (1964). "On estimating regression ."
Theor. Prob. Appl., 9, pp.141-142.
Schaal, S., & Atkeson, C. G. (l994b). "Assessing the
quality of learned local models." In: Cowan, J. ,Te­
sauro, G., & Alspector, J. (Eds.), Advances in Neural
Information Processing Systems 6. Morgan Kaufmann.
Scott, D. W. (1992). Multivariate Density Estimation.
New York: Wiley.
Sutton, R. S. (1992). "Gain adaptation beats least
squares." In: Proc. of 7th Yale Workshop on Adaptive
and Learning Systems, New Haven, CT.
Wolpert, D. H. (1990). "Stacked genealization." Los
Alamos Technical Report LA-UR-90-3460.

Boosting Decision Trees

Harris Drucker
AT&T Bell Laboratories

Holmdel, New Jersey 07733

Corinna Cortes
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

Abstract

A new boosting algorithm of Freund and Schapire is used to improve
the performance of decision trees which are constructed using the
information ratio criterion of Quinlan's C4.5 algorithm. This boosting
algorithm iteratively constructs a series of decision trees, each decision
tree being trained and pruned on examples that have been filLered by
previously trained trees. Examples that have been incorrectly classified
by the previous trees in the ensemble are resampled with higher
probability to give a new probability distribution for the next tree in the
ensemble to train on. Results from optical character recognition
(OCR), and knowledge discovery and data mining problems show that
in comparison to single trees, or to trees trained independently, or to
trees trained on subsets of the feature space, the boosting ensemble is
much better.

1 INTRODUCTION

A new boosting algorithm termed AdaBoost by their inventors (Freund and Schapire,
1995) has advantages over the original boosting algorithm (Schapire, 1990) and a second
version (Freund, 1990). The implications of a boosting algorithm is that one can take a
series of learning machines (termed weak learners) each having a poor error rate (but no
worse than .5-y, where y is some small positive number) and combine them to give an
ensemble that has very good performance (termed a strong learner). The first practical
implementation of boosting was in OCR (Drucker, 1993, 1994) using neural networks as
the weak learners. In a series of comparisons (Bottou, 1994) boosting was shown to be
superior to other techniques on a large OCR problem.

The general configuration of AdaBoost is shown in Figure 1. Each box is a decision tree
built using Quinlans C4.5 algorithm (Quinlan, 1993) The key idea is that each weak
learner is trained sequentially. The first weak learner is trained on a set of patterns picked
randomly (with replacement) from a training set. After training and pruning, the training
patterns are passed through this first decision tree. In the two class case the hypothesis hi
is either class 0 or class 1. Some of the patterns will be in error. The training set for the

480

.5

w
~ a:
a:
o a:
a:
w

H. DRUCKER. C. CORTES

INPUT FEATURES

#1 #2 #3 T

h 1 h h hT
~2 ~3 ~l ~T 2 3

~)t log (11 ~t)
FIGURE 1. BOOSTING ENSEMBLE

ENSEMBLE
TRAINING
ERROR RATE

WEAK LEARNER WEIGHTED
TRAINING ERROR RATE

ENSEMBLE TEST ERROR RATE

NUMBER OF WEAK LEARNERS

FIGURE 2. INDIVIDUAL WEAK LEARNER ERROR RATE
AND ENSEMBLE TRAINING AND TEST ERROR RATES

Boosting Decision Trees 481

second weak learner will consist of patterns picked from the training set with higher
probability assigned to those patterns the first weak learner classifies incorrectly. Since
patterns are picked with replacement, difficult patterns are more likely to occur multiple
times in the training set. Thus as we proceed to build each member of the ensemble,
patterns which are more difficult to classify correctly appear more and more likely. The
training error rate of an individual weak learner tends to grow as we increase the number
of weak learners because each weak learner is asked to classify progressively more
difficult patterns. However the boosting algorithm shows us that the ensemble training
and test error rate decrease as we increase the number of weak learners. The ensemble
output is determined by weighting the hypotheses with the log of (l!~i) where ~ is
proportional to the weak learner error rate. If the weak learner has good error rate
performance, it will contribute significantly to the output, because then 1 / ~ will be large.

Figure 2 shows the general shape of the curves we would expect. Say we have
constructed N weak learners where N is a large number (right hand side of the graph).
The N'th weak learner (top curve) will have a training error rate that approaches .5
because it is trained on difficult patterns and can do only sightly better than guessing.
The bottom two curves show the test and training error rates of the ensemble using all N
weak learners. which decrease as weak learners are added to the ensemble.

2 BOOSTING

Boosting arises from the PAC (probably approximately correct) learning model which
has as one of its primary interests the efficiency of learning. Schapire was the first one to
show that a series of weak learners could be converted to a strong learner. The detailed
algorithm is show in Figure 3. Let us call the set of N 1 distinct examples the original
training set. We distinguish the original training set from what we will call the filtered
training set which consists of N 1 examples picked with replacement from the original
training set. Basically each of N 1 original examples is assigned a weight which is
proportional to the probability that the example will appear in the filtered training set
(these weights have nothing to do with the weights usually associated with neural
networks). Initially all examples are assigned a weight of unity so that all the examples
are equally likely to show up in the initial set of training examples. However, the weights
are altered at each state of boosting (Step 5 of Figure 3) and if the weights are high we
may have multiple copies of some of the original examples appearing in the filtered
training set. In step three of this algorithm, we calculate what is called the weighted
training error and this is the error rate over all the original N 1 training examples
weighted by their current respective probabilities. The algorithms terminates if this error
rate is .5 (no better than guessing) or zero (then the weights of step 5 do not change).
Although not called for in the original C4.5 algorithm, we also have an original set of
pruning examples which also are assigned weights to form a filtered pruning set and used
to prune the classification trees constructed using the filtered training set. It is known
(Mingers, 1989a) that reducing the size of the tree (pruning) improves generalization.

3 DECISION TREES

For our implementation of decision trees, we have a set of features (attributes) that
specifies an example along with their classification (we discuss the two-class problem
primarily). We pick a feature that based on some criterion, best splits the examples into
two subsets. Each of these two subsets will usually not contain examples of just one
class, so we recursively divide the subsets until the final subsets each contain examples of
just one class. Thus, each internal node specifies a feature and a value for that feature that
determines whether one should take the left or right branch emanating from that node. At
terminal nodes, we make the final decision, class 0 or 1. Thus, in decision trees one
starts at a root node and progressively traverses the tree from the root node to one of the

482 H. DRUCKER,C. CORTES

Inputs: N I training paUans. N 2 pruning paUems. N 3 test paUans

laitialize the weight veco of the N I training pattems: wI = 1 for i = 1 •...• N I
laitialize the weight veco of the N 2 pruning paUmls: sl = 1 for i = 1 •...• N 2

laitialize the number of trees in the ensemble to t = 1

Do Vatil weighted training enol' rate is 0 or .5 or ensemble test enoI'rate asymptotes

1. For the training set and pruning sets

w'
p'=-­N.

1:wl
i-I

a'
r' = -w.-

1:sl

Pick N I samples from original training set with probability P(i) to form filtered training set
Pick N 2 samples from original pruning set with probability r(i) to form filtered pruning set

2. Train tree t using filtered training set and prune using filtered pruning set

3. Pass the N I mginal training examples through the IRJICd tree whose output h, (i) is
either 0 or 1 and classification c(i) is either 0 or 1. Calculate the weighted training error

N.
rate: E, = 1: pll h, (i) - c(i) I

i-I

E,
4. Set Ii, = 1

- E,

5. Set the new training weight vectm' to be

wI+1 = wf{Ii,**(1-lh,(i) - c(i)I») i = 1 •...• N I

Pass the N 2 original pruning paUems through the pruned tree and calculate new pruning
weight vector:

6. F<r each tree t in the ensemble (total trees 1) • pass the j'th test pattern through and
obtain h, (j) for each t The final hypothesis hr(j) for this pattern:

hr (j)={I.
O.

Do for each test paUml and calculate the ensemble test enu rate:

7.t=t+l

End Vatil

Figure 3: Boosting Algorithm

Boosting Decision Trees 483

terminal nodes where a final decision is made. CART (Brei man, 1984) and C4.5
(Quinlan 1993) are perhaps the two most popular tree building algorithms. Here, C4.5 is
used. The attraction of trees is that the simplest decision tree can be respecified as a
series of rules and for certain potential users this is more appealing than a nonlinear
"black box" such as a neural network. That is not to say that one can not design trees
where the decision at each node depends on some nonlinear combination of features, but
this will not be our implementation.

Other attractions of decision trees are speed of learning and evaluation. Whether trees are
more accurate than other techniques depends on the application domain and the
effectiveness of the particular implementation. In OCR, our neural networks are more
accurate than trees but the penalty is in training and evaluation times. In other
applications which we will discuss later a boosting network of trees is more accurate. As
an initial example of the power of boosting, we will use trees for OCR of hand written
digits. The main rationale for using OCR applications to evaluate AdaBoost is that we
have experience in the use of a competing technology (neural networks) and we have
from the National Institute of Standards and Technology (NISn a large database of
120,000 digits, large enough so we can run multiple experiments. However, we will not
claim that trees for OCR have the best error performance.

Once the tree is constructed, it is pruned to give hopefully better generalization
performance than if the original tree was used. C4.5 uses the original training set for
what is called "pessimistic pruning" justified by the fact that there may not be enough
extra examples to form a set of pruning examples. However, we prefer to use an
independent set of examples to prune this tree. In our case, we have (for each tree in the
ensemble) an independent filtered pruning set of examples whose statistical distribution is
similar to that of the filtered training set. Since the filtering imposed by the previous
members of the ensemble can severely distort the original training distribution, we trust
this technique more than pessimistic pruning. In pruning (Mingers, 1989), we pass the
pruning set though the tree recording at each node (including non-terminal nodes) how
many errors there would be if the tree was terminated there. Then, for each node (except
for terminal nodes), we examine the subtree of that node. We then calculate the number
of errors that would be obtained if that node would be made a terminal node and compare
it to the number of errors at the terminal nodes of that subtree. If the number of errors at
the root node of this subtree is less than or equal to that of the subtree, we replace the
subtree with that node and make it a terminal node. Pruning tends to substantially reduce
the size of the tree, even if the error rates are not substantially decreased.

4 EXPERIMENTS

In order to run enough experiments to claim statistical validity we needed a large supply
of data and few enough features that the information ratio could be determined in a
reasonable amount of time. Thus we used the 120,000 examples in a NIST database of
digits subsampled to give us a IOxlO pixel array (100 features) where the features are
continuous values. We do not claim that OCR is best done by using classification trees
and certainly not in l00-dimensional space. We used 10,000 training examples, 2000
pruning examples and 2000 test examples for a total of 14,000 examples.

We also wanted to test our techniques on a wide range of problems, from easy to hard.
Therefore, to make the problem reasonably difficult, we assigned class 0 to all digits from
o to 4 (inclusive) and assigned class 1 to the remainder of the digits. To vary the
difficulty of the problem, we prefiltered the data to form data sets of difficulty f Think of
f as the fraction of hard examples generated by passing the 120,000 examples through a
poorly trained neural network and accepting the misclassified examples with probability f
and the correctly classified examples with probability 1- f. Thus f = .9 means that the
training set consists of 10,000 examples that if passed through this neural network would

484 H.DRUCKER,C. CORTES

have an error rate of .9. Table I compares the boosting performance with single tree
performance. Also indicated is the average number of trees required to reach that
performance. Overtraining never seems to be a problem for these weak learners, that is,
as one increases the number of trees, the ensemble test error rate asymptotes and never
increases.

Table 1. For fraction f of difficult examples, the error rate for a single tree and a boosting
ensemble and the number of trees required to reach the error rate for that ensemble.

f single boosting number of
tree trees trees

.1 12% 3.5% 25

.3 13 4.5 28

.5 16 7.1 31

.7 21 7.7 60

.9 23 8.1 72

We wanted to compare the boosting ensemble to other techniques for constructing
ensembles using 14,000 examples, holding out 2000 for testing. The problem with
decision trees is that invariably, even if the training data is different (but drawn from the
same distribution), the features chosen for the first few nodes are usually the same (at
least for the OCR data). Thus, different decision surfaces are not created. In order to
create different decision regions for each tree, we can force each decision tree to consider
another attribute as the root node, perhaps choosing that attribute from the first few
attributes with largest information ratio. This is similar to what Kwok and Carter (1990)
have suggested but we have many more trees and their interactive approach did not look
feasible here. Another technique suggested by T.K. Ho (1992) is to construct independent
trees on the same 10,000 examples but randomly striking out the use of fifty of the 100
possible features. Thus, for each tree, we randomly pick 50 features to construct the tree.
When we use up to ten trees, the results using Ho's technique gives similar results to that
of boosting but the asymptotic performance is far better for boosting. After we had
performed these experiments, we learned of a technique termed "bagging" (Breiman,
1994) and we have yet to resolve the issue of whether bagging or boosting is better.

5 CONCLUSIONS

Based on preliminary evidence, it appears that for these applications a new boosting
algorithm using trees as weak learners gives far superior performance to single trees and
any other technique for constructing ensemble of trees. For boosting to work on any
problem, one must find a weak learner that gives an error rate of less than 0.5 on the
filtered training set. An important aspect of the building process is to prune based on a
separate pruning set rather than pruning based on a training set. We have also tried this
technique on knowledge discovery and data mining problems and the results are better
than single neural networks.

References

L. Bottou, C. Cortes, J.S. Denker, H. Drucker, I. Guyon, L.D. Jackel, Y. LeCun, U.A.
Muller, E. Sackinger, P. Simard, and V. Vapnik (1994), "Comparison of Classifier
Methods: A Case Study in Handwritten Digit Recognition", 1994 International
Conference on Pattern Recognition, Jerusalem.

L. Breiman, J. Friedman, R.A. Olshen, and C.J. Stone (1984), Classification and
Regression Trees, Chapman and Hall.

Boosting Decision Trees 485

L. Breiman, "Bagging Predictors", Technical Report No. 421, Department of Statistics
University of California, Berkeley, California 94720, September 1994.

H. Drucker (1994), C. Cortes, LD Jackel, Y. LeCun "Boosting and Other Ensemble
Methods", Neural Computation, vol 6, no. 6, pp. 1287-1299.

H. Drucker, R.E. Schapire, and P. Simard (1993) "Boosting Performance in Neural
Networks", International Journal of Pattern Recognition and Artificial Intelligence, Vol
7. N04, pp. 705-719.

Y. Freund (1990), "Boosting a Weak Learning Algorithm by Majority", Proceedings of
the Third Workshop on Computational Learning Theory, Morgan-Kaufmann, 202-216.

Y. Freund and R.E. Schapire (1995), "A decision-theoretic generalization of on-line
leaming and an application to boosting", Proceeding of the Second European Conference
on Computational Learning.

T.K. Ho (1992), A theory of MUltiple Classifier Systems and Its Applications to Visual
Word Recognition, Doctoral Dissertation, Department of Computer Science, SUNY at
Buffalo.

S.W. Kwok and C. Carter (1990), "Multiple Decision Trees", Uncertainty in ArtifiCial
Intelligence 4, R.D. Shachter, T.S. Levitt, L.N. Kanal, J.F Lemmer (eds) Elsevier Science
Publishers.

J.R. Quinlan (1993), C4.5: Programs For Machine Learning, Morgan Kauffman.

J. Mingers (1989), "An Empirical Comparison of Pruning Methods for Decision Tree
Induction", Machine Learning, 4:227-243.

R.E. Schapire (1990), The strength of weak learnability, Machine Learning, 5(2):197-
227.

