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Abstract 

Central to the performance improvement of a committee relative to 
individual networks is the error correlation between networks in the 
committee. We investigated methods of achieving error indepen­
dence between the networks by training the networks with different 
resampling sets from the original training set. The methods were 
tested on the sinwave artificial task and the real-world problems of 
hepatoma (liver cancer) and breast cancer diagnoses. 

1 INTRODUCTION 

The idea of a neural net committee is to combine several neural net predictors 
to perform collective decision making, instead of using a single network (Perrone, 
1993). The potential of a committee in improving classification performance has 
been well documented. Central to this improvement is the extent to which the 
errors tend to coincide. Committee errors occur where the misclassification sets of 
individual networks overlap. On the one hand, if all errors of committee members 
coincide, using a committee does not improve performance. On the other hand, if 
errors do not coincide, performance of the committee dramatically increases and 
asymptotically approaches perfect performance. Therefore, it is beneficial to make 
the errors among the networks in the committee less correlated in order to improve 
the committee performance. 
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One way of making the networks less correlated is to train them with different sets 
of data. Decreasing the error correlation by training members of the committee 
using different sets of data is intuitively appealing. Networks trained with different 
data sets have a higher probability of generalizing differently and tend to make 
errors in different places in the problem space. 

The idea is to split the data used in the training into several sets. The sets are 
not necessarily mutually exclusive, they may share part of the set (overlap). This 
idea resembles resampling methods such as cross-validation and bootstrap known 
in statistics for estimating the error of a predictor from limited sets of available 
data. In the committee framework, these techniques are recast to construct different 
training sets from the original training set. David Wolpert (1992) has put forward 
a general framework of training the committee using different partitions of the 
data known as stacked generalization. This approach has been adopted to the 
regression environment and is called stacked regression (Breiman, 1992). Stacked 
regression uses cross-validation to construct different sets of regression functions. 
A similar idea of using a bootstrap method to construct different training sets has 
been proposed by Breiman (1994) for classification and regression trees predictors. 

2 THE ALGORITHMS 

2.1 BOOTSTRAP COMMITTEE (BOOTC) 

Consider a total of N items are available for training. The approach is to generate 
K replicates from the original set, each containing the same number of item as the 
original set. The replicates are obtained from the original set by drawing at random 
with replacement. See Efron & Tibshirani (1993) for background on bootstrapping. 
Use each replicate to train each network in the committee. 

Using this bootstrap procedure, each replicate is expected to include roughly 36 
% duplicates (due to replacement during sampling). Only the distinct fraction is 
used for training and the leftover fraction for early stopping, if necessary (notice 
slight difference from the standard bootstrapping and from Breiman's bagging). 
Early stopping usually requires a fraction of the data to be taken from the original 
training set, which might degrade the performance of the neural network. The 
advantage of a BOOTC is that the leftover sample is already available. 

Algorithm: 

1. Generate bootstrap replicates Ll, ... , LK from the original set. 

2. For each bootstrap replicate, collect unsampled items into leftover sample 
t .. l*l l*K se s, gIVIng: , ... , . 

3. For each Lk, train a network. Use the leftover set l*k as validation stopping 
criteria if necessary. Giving K neural net predictors: f(~i Lk) 

4. Build a committee from the bootstrap networks using a simple averaging 
procedure: fcom(~) = ic ~~=l f(~i Lk) 

There is no rule as to how many bootstrap replicates should be used to achieve a 
good performance. In error estimation, the number ranges from 20 to 200. It is 
beneficial to keep the number of replicates, hence the number of networks, small to 
reduce training time. Unless the networks are trained on a parallel machine, training 
time increases proportionally to the number of networks in the committee. In this 
experiment, 20 bootstrap training replicates were constructed for 20 networks in 
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the committee. Twenty replicates were chosen since beyond this number there is 
no significant improvement on the performance. 

2.2 CROSS-VALIDATION COMMITTEE (CVC) 

The algorithm is quite similar to the procedure used in prediction error estimation. 
First, generate replicates from the original training set by removing a fraction of 
the data. Let D denote the original data, and D-V denote the data with subset 
v removed. The procedure revolves so that each item is in the removed fraction 
at least once. Generate replicates D11Jl , ••• Di/Ie and train each network in the 
committee with one replicate. 

An important issue in the eve is the degree of data overlap between the replicates. 
The degree of overlap depends on the number of replicates and the size of a removed 
fraction from the original sample. For example, if the committee consists of 5 
networks and 0.5 of the data are removed for each replicate, the minimum fraction 
of overlap is 0 (calculation: (v x 2) - 1.0) and the maximum is ~ (calculation: 

1.0 - k)' 
Algorithm: 

1. Divide data into v-fractions db . . . , dv 
2. Leave one fraction die and train network fie with the rest of the data (D-d le ). 

3. Use die as a validation stopping criteria, if necessary. 

4. Build a committee from the networks using a simple averaging procedure. 

The fraction of data overlap determines the trade-off between the individual network 
performance and error correlation between the networks. Lower correlation can be 
expected if the networks train with less overlapped data, which means a larger 
removed fraction and smaller fraction for training. The smaller the training set 
size, the lower the individual network performance that can be expected. 

We investigated the effect of data overlap on the error correlations between the 
networks and the committee performance. We also studied the effect of training 
size on the individual performance. The goal was to find an optimal combination 
of data overlap and individual training size. 

3 THE BASELINE & PERFORMANCE EVALUATION 

To evaluate the improvement of the proposed methods on the committee perfor­
mance, they should be compared with existing methods as the baseline. The com­
mon method for constructing a committee is to train an ensemble of networks 
independently. The networks in the committee are initialized with different sets 
of weights. This type of committee has been reported as achieving significant im­
provement over individual network performances in regression (Hashem, 1993) and 
classification tasks (Perrone, 1993; Parmanto et al., 1994). 

The baseline, BOOTe, and eve were compared using exactly the same architecture 
and using the same pair of training-test sets. Performance evaluation was conducted 
using 4-fold exhaustive cross-validation where 0.25 fraction of the original data is 
used for the test set and the remainder of the data is used for the training set. The 
procedure was repeated 4 times so that all items were once on the test set. The 
performance was calculated by averaging the results of 4 test sets. The simulations 



Improving Committee Diagnosis with Resampling Techniques 885 

were conducted several times using different initial weights to exclude the possibility 
that the improvement was caused by chance. 

4 EXPERIMENTS 

4.1 SYNTHETIC DATA: SINWAVE CLASSIFICATION 

The sinwave task is a classification problem with two classes, a negative class rep­
resented as 0 and a positive class represented as 1. The data consist of two input 
variables, x = (Xli X2). The entire space is divided equally into two classes with 
the separation line determined by the curve X2 = sin( 2: Xl). The upper half of the 
rectangle is the positive class, while the lower half is the negative one (see Fig. 1). 

Gaussian noise along the perfect boundary with variance of 0.1 is introduced to 
the clean data and is presented in Fig. 1 (middle). Let z be a vector drawn from 
the Gaussian distribution with variance TI, then the classification rule is given by 
equation: 

(1) 

A similar artificial problem is used to analyze the bias-variance trade-offs by Geman 
et al. (1992). 

Figure 1: Complete and clean data/without noise (top), complete data with noise 
(middle), and a small fraction used for training (bottom). 

The population contains 3030 data items, since a grid of 0.1 is used for both Xl and 
X2 . In the real world, we usually have no access to the entire population. To mimic 
this situation, the training set contained only a small fraction of the population. 
Fig. 1 (bottom) visualizes a training set that contains 200 items with 100 items for 
each class. The training set is constructed by randomly sampling the population. 
The performance of the predictor is measured with respect to the test set. The 
population (3030 items) is used as the test set. 

4.2 HEPATOMA DETECTION 

Hepatoma is a very important clinical problem in patients who are being considered 
for liver transplantation for its high probability of recurrence. Early hepatoma 
detection may improve the ultimate outlook of the patients since special treatment 
can be carried out. Unfortunately, early detection using non-invasive procedures 
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can be difficult, especially in the presence of cirrhosis. We have been developing 
neural network classifiers as a detection system with minimum imaging or invasive 
studies (Parmanto et al., 1994). 

The task is to detect the presence or absence (binary output) of a hepatoma given 
variables taken from an individual patient. Each data item consists of 16 variables, 
7 of which are continuous variables and the rest are binary variables, primarily 
blood measurements. 

For this experiment, 1172 data items with their associated diagnoses are available. 
Out of 1172 itmes, 693 items are free from missing values, 309 items contain missing 
values only on the categorical variables, and 170 items contain missing values on 
both types of variables. For this experiment, only the fraction without missing 
values and the fraction with missing values on the categorical variables were used, 
giving the total item of 1002. Out of the 1002 items, 874 have negative diagnoses 
and the remaining 128 have positive diagnoses. 

4.3 BREAST CANCER 

The task is to diagnose if a breast cytology is benign or malignant based on cyto­
logical characteristics. Nine input variables have been established to differentiate 
between the benign and malignant samples which include clump thickness, marginal 
adhesion, the uniformity of cell size and shape, etc. 

The data set was originally obtained from the University of Wisconsin Hospitals 
and currently stored at the UCI repository for machine learning (Murphy & Aha, 
1994). The current size of the data set is 699 examples. 

5 THE RESULTS 

Committee Performance Indiv. Performance 
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Figure 2: Results on the sinwave classif. task. Performances of individual nets 
and the committee (top); error correlation and committee improvement (bottom). 

Figure 2. (top) and Table 1. show that the performance of the committee is always 
better than the average performance of individual networks in all three committees. 
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Task Methods Indiv. Nets Error Committee Improv. Improv. 
% error Corr % error to Indiv. to baseline 

Smwave Baseline 13.31 .87 11.8 11 '70 -
(2 vars ) BOOTC 12.85 .57 8.36 35 % 29 % 

CVC 15.72 .33 9.79 38 % 17 % 
Cancer Baseline 2.7 .96 2.5 5% -
(9 vars) BOOTC 3.14 .83 2.0 34 % 20 % 

CVC 3.2 .80 1.63 49 % 35 % 
Hepatoma BaSeline 25.95 .89 23.25 10.5 % -
(16 vars) BOOTC 26.00 .70 19.72 24 % 15.2 % 

CVC 26.90 .55 19.05 29 % 18 % 

Table 1: Error rate, correlation, and performance improvement calculated based on 
the best architecture for each method. Reduction of misclassification rates compare 
to the baseline committee 
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Figure 3: Error correlation and fraction of overlap in training data (results from 
the sinwave classification task). 

The CVC and BOOTC are always better than the baseline even when the individual 
network performance is worse. Figure 2 (bottom) and the table show that the 
improvement of a committee over individual networks is proportional to the error 
correlation between the networks in the committee. The CVC consistently produces 
significant improvement over its individual network performance due to the low error 
correlation, while the baseline committee only produces modest improvement. This 
result confirms the basic assumption of this research: committee performance can 
be improved by decorrelating the errors made by the networks. 

The performance of a committee depends on two factors: individual performance of 
the networks and error correlation between the networks. The gain of using BOOTC 
or CVC depends on how the algorithms can reduce the error correlations while still 
maintaining the individual performance as good as the individual performance of the 
baseline. The BOOTC produced impressive improvement (29 %) over the baseline 
on the sinwave task due to the lower correlation and good individual performance. 
The performances of the BOOTC on the other two tasks were not as impressive 
due to the modest reduction of error correlation and slight decrease in individual 
performance. The performances were still significantly better than the baseline 
committee. The CVC, on the other hand, consistently reduced the correlation and 



888 B. PARMANTO, P. W. MUNRO, H. R. DOYLE 

improved the committee performance. The improvement on the sinwave task was 
not as good as the BOOTC due to the low individual performance. 

The individual performance of the CVC and BOOTC in general are worse than the 
baseline. The individual performance of CVC is 18 % and 19 % lower than the 
baseline on the sinwave and cancer tasks respectively, while the BOOTC suffered 
significant reduction of individual performance only on the cancer task (16 %). The 
degradation of individual performance is due to the smaller training set for each 
network on the CVC and the BOOTC. The detrimental effect of a small training 
set, however, is compensated by low correlation between the networks. The effect 
of a smaller training set depends on the size of the original training set. If the data 
size is large, using a smaller set may not be harmful. On the contrary, if the data set 
is small, using an even smaller data set can significantly degrade the performance. 

Another interesting finding of this experiment is the relationship between the error 
correlation and the overlap fraction in the training set. Figure 3 shows that small 
data overlap causes the networks to have low correlation to each other. 

6 SUMMARY 

Training committees of networks using different set of data resampled from the 
original training set can improve committee performance by reducing the error cor­
relation among the networks in the committee. Even when the individual network 
performances of the BOOTC and CVC degrade from the baseline networks, the 
committee performance is still better due to the lower correlation. 

Acknowledgement 

This study is supported in part by Project Grant DK 29961 from the National 
Institutes of Health, Bethesda, MD. We would like to thank the Pittsburgh Trans­
plantation Institute for providing the data for this study. 

References 

Breiman, L, (1992) Stacked Regressions, TR 367, Dept. of Statistics., UC. Berkeley. 

Breiman, L, (1994) Bagging Predictors, TR 421, Dept. of Statistics, UC. Berkeley. 

Efron, B., & Tibshirani, R.J. (1993) An Introd. to the Bootstrap. Chapman & Hall. 

Hashem, S. (1994). Optimal Linear Combinations of Neural Networks. PhD Thesis, 
Purdue University. 

Geman, S., Bienenstock, E., and Doursat, R. (1992) Neural networks and the 
bias/variance dilemma. Neural Computation, 4(1), 1-58. 

Murphy, P. M., &. Aha, D. W. (1994). UCI Repository of machine learning databases 
[ftp: ics.uci.edu/pub/machine-Iearning-databases/] 

Parmanto, B., Munro, P.W., Doyle, H.R., Doria, C., Aldrighetti, 1., Marino, I.R., 
Mitchel, S., and Fung, J.J. (1994) Neural network classifier for hepatoma detectipn. 
Proceedings of the World Congress of Neural Networks 1994 San Diego, June 4-9. 

Perrone, M.P. (1993) Improving Regression Estimation: Averaging Methods for 
Variance Reduction with Eztension to General Convez Measure Optimization. PhD 
Thesis, Department of Physics, Brown University. 

Wolpert, D. (1992). Stacked generalization, Neural Networks, 5, 241-259. 


