
On Neural Networks with Minimal
Weights

Vasken Bohossian J ehoshua Bruck

California Institute of Technology
Mail Code 136-93

Pasadena, CA 91125
E-mail: {vincent, bruck }«Iparadise. cal tech. edu

Abstract

Linear threshold elements are the basic building blocks of artificial
neural networks. A linear threshold element computes a function
that is a sign of a weighted sum of the input variables. The weights
are arbitrary integers; actually, they can be very big integers-­
exponential in the number of the input variables. However, in
practice, it is difficult to implement big weights. In the present
literature a distinction is made between the two extreme cases:
linear threshold functions with polynomial-size weights as opposed
to those with exponential-size weights. The main contribution of
this paper is to fill up the gap by further refining that separation.
Namely, we prove that the class of linear threshold functions with
polynomial-size weights can be divided into subclasses according
to the degree of the polynomial. In fact, we prove a more general
result- that there exists a minimal weight linear threshold function
for any arbitrary number of inputs and any weight size. To prove
those results we have developed a novel technique for constructing
linear threshold functions with minimal weights.

1 Introduction

Human brains are by far superior to computers for solving hard problems like combi­
natorial optimization and image and speech recognition, although their basic build­
ing blocks are several orders of magnitude slower. This observation has boosted
interest in the field of artificial neural networks [Hopfield 82]' [Rumelhart 82]. The
latter are built by interconnecting multiple artificial neurons (or linear threshold
gates), whose behavior is inspired by that of biological neurons . Artificial neural
networks have found promising applications in pattern recognition, learning and

On Neural Networks with Minimal Weights 247

other data processing tasks. However most of the research has been oriented to­
wards the practical aspect of neural networks, simulating or building networks for
particular tasks and then comparing their performance with that of more traditional
methods for those particular tasks. To compare neural networks to other compu­
tational models one needs to develop the theoretical settings in which to estimate
their capabilities and limitations.

1.1 Linear Threshold Gate

The present paper focuses on the study of a single linear threshold gate (artificial
neuron) with binary inputs and output as well as integer weights (synaptic coeffi­
cients). Such a gate is mathematically described by a linear threshold function.

Definition 1 (Linear Threshold FUnction)
A linear threshold function of n variables is a Boolean function f { -1, I} n ~
{ -1, 1} that can be written as

n

f(....) - (F(.... » - { 1 ,for F(x) ~ 0 x - sgn x - 1 th . - ,0 erW1se , where F(x) = tV· x = L WiXi

i=1

for any x E {-1, 1}n and a fixed tV E zn.

Although we could allow the weights Wi to be real numbers, it is known [Muroga 71),
[Raghavan 88) that for a, binary input neuron, one needs O(n log n) bits per weight,
where n is the number of inputs. So in the rest ofthe paper, we will assume without
loss of generality that all weights are integers.

1.2 Motivation

Many experimental results in the area of neural networks have indicated that the
magnitudes of the coefficients in the linear threshold elements grow very fast with
the size of the inputs and therefore limit the practical use of the network. One
natural question to ask is the following. How limited is the computational power of
the network if one limits oneself to threshold elements with only "small" growth in
the size of the coefficients? To answer that question we have to define a measure of
the magnitudes of the weights. Note that, given a function I, the weight vector tV
is not unique (see Example 1 below).

Definition 2 (Weight Space)
Given a lineal' threshold function f we define W as the set of all weights that satisfy
Definition 1, that is W = {UI E zn : Vx E {-1, 1}n,sgn(tV· x) = f(x)}.

Here follows a measure of the size of the weights.

Definition 3 (Minimal Weight Size)
We define the size of a weight vector as the sum of the absolute values of the weights.
The minimal weight size of a linear threshold function is defined as :

n

S[j) = ~ia/L IWi I)
,=1

The particular vector that achieves the minimum is called a minimal weight vector.

Naturally, S[f) is a function of n.

248 V. BOHOSSIAN, J. BRUCK

It has been shown [Hastad 94], [Myhill 61], [Shawe-Taylor 92], (Siu 91] that there
exists a linear threshold function that can be implemented by a single threshold
element with exponentially growing weights, S[j] '" 2'1, but cannot be implemented
by a threshold element with smaller: polynomialy growing weights, S[j] '" nd , d
constant. In light of that result the above question was dealt with by defining a
class within the set of linear threshold functions: the class of functions with "small"
(Le. polynomialy growing) weights [Siu 91]. Most of the recent research focuses on
the power of circuits with small weights, relative to circuits with arbitrary weights
[Goldmann 92], [Goldman 93]. Rather than dealing with circuits we are interested
in studying a single threshold gate. The main contribution of the present paper is
to further refine the division of small versus arbitrary weights. We separate the set
of functions with small weights into classes indexed by d, the degree of polynomial
growth and show that all of them are non-empty. In particular, we develop a
technique for proving that a weight vector is minimal. We use that technique to
construct a function of size S[j] = s for an arbitrary s.

1.3 Approach

The main difficulty in analyzing the size of the weights of a threshold element is due
to the fact that a single linear threshold function can be implemented by different
sets of weights as shown in the following example.

Example 1 (A Threshold FUnction with Minimal Weights)
Consider the following two sets of weights (weight vectors).

tih = (124), FI(X) = Xl + 2X2 + 4X3

W2 = (248), F2(X) = 2XI + 4X2 + 8X3

They both implement the same threshold function

f(X) = sgn(F2(x» = sgn(2FI (x» = sgn(FI (x»

A closer look reveals that f(x) = sgn(x3), implying that none of the above weight
vectors has minimal size. Indeed, the minimal one is W3 = (00 1) and S(J] = 1.

It is in general difficult to determine if a given set of weights is minimal [Amaldi 93],
[Willis 63]. Our technique consists of limiting the study to only a particular subset
of linear threshold functions, a subset for which it is possible to prove that a given
weight vector is minimal. That subset is loosely defined by the requirement that
there exist input vectors for which f(x) = f(-x). The existence of such a vector,
called a root of f, puts a constraint on the weight vector used to implement f. The
larger the set of roots - the larger the constraint on the set of weight vectors, which
in turn helps determine the minimal one. A detailed description of the technique is
given in Section 2.

1.4 Organization

Here follows a brief outline of the rest of the paper. Section 2 mathematically defines
the setting of the problem as well as derives some basic results on the properties
of functions that admit roots. Those results are used as bUilding blocks for the
proof of the main results in Section 3. It also introduces a construction method
for functions with minimal weights. Section 3 presents the main result: for any
weight size, s, and any nunlber of inputs, n, there exists an n-input linear threshold
fllllction that requires weights of size S[f] = s. Section 4 presents some applications
of the result of Section 3 and indicates future research directions.

On Neural Networks with Minimal Weights 249

2 Construction of Minimal Threshold Functions

The present section defines the mathematical tools used to construct functions with
minimal weights.

2.1 Mathematical setting

We are interested in constructing functions for which the minimal weight is easily
determined. Finding the minimal weight involves a search, we are therefore inter­
ested in finding functions with a constrained weight spaces. The following tools
allows us to put constraints on W.

Definition 4 (Root Space of a Boolean Function)
A vector v E {-I, 1} n such that 1 (V) = 1 (-V) is called a root of I. We define the
root space, R, as the set of all roots of I.

Definition 5 (Root Generator Matrix)
For a given weight vector w E W and a root v E R, the root generator matrix,
G = (gij), is a (n x k)-matrix, with entries in {-I, 0,1}, whose rows 9 are orthogonal
to w and equal to vat all non-zero coordinates, namely,

1. Gw = 0

2. 9ij = ° or 9ij = Vj for all i and j.

Example 2 (Root Generator Matrix)
Suppose that we are given a linear threshold function specified by a weight
vector w = (1,1,2,4,1,1,2,4). By inspection we determine one root v =
(1,1,1,1, -1, -1, -1, -1). Notice that WI + W2 - W7 = ° which can be written
as g. w = 0, where 9 = (1,1,0,0,0,0, -1,0) is a row of G. Set r= v - 2g. Since 9
is equal to vat all non-zero coordinates, r E {-I, I} n. Also r· w = v· w + g. w = 0.
We have generated a new root : r = (-1, -1, 1, 1, -1, -1, 1, -1).

Lemma 6 (Orthogonality of G and W)
For a given weight vector w E Wand a root v E R

ilGT = 0
holds for any weight vector il E W.

Proof. For an arbitrary il E Wand an arbitrary row, gi, of G, let if = v - 2gi.
By definition of gi, if E {-I,1}n and if· w = 0. That implies I(if) = I(-if) : if
is a root of I. For any weight vector il E W, sgn(il· if) = sgn(-il· if). Therefore
il· (v - 2gi) = ° and finally, since v· il = ° we get il· gi = 0. 0

Lemma 7 (Minimality)
For a given weight vector w E W and a root v E R if rank(G) = n - 1 (Le. G
has n - 1 independent rows) and IWil = 1 for some i, then w is the minimal weight
vector.

Proof. From Lemma 6 any weight vector il satisfies ilGT = O. rank(G) = n - 1
implies that dim(W) = 1, i.e. all possible weight vectors are integer multiples of
each other. Since IWi I = 1, all vectors are of the form il = kw, for k ~ 1. Therefore
w has the smallest size. 0

We complete Example 2 with an application of Lemma 7.

250 V. BOHOSSIAN, J. BRUCK

Example 3 (Minimality)
Given ill = (1,1,2,4,1,1,2,4) and v = (1,1,1,1, -1, -1, -1, -1) we can construct:

1 0 0 0 -1 0 0 0
0 1 0 0 0 -1 0 0
0 0 1 0 0 0 -1 0

G= 0 0 0 1 0 0 0 -1
1 0 0 0 0 -1 0 0
1 1 0 0 0 0 -1 0
1 1 1 0 0 0 0 -1

It is easy to verify that rank(G) = n - 1 = 7 and therefore, by Lemma 7, ill is
minimal and 8[/] = 16.

2.2 Construction of minimal weight vectors

In Example 3 we saw how, given a weight vector, one can show that it is minimal.
In this section we present an example of a linear threshold function with minimal
weight size, with an arbitrary number of input variables.

We would like to construct a weight vector and show that it is minimal. Let
the number of inputs, n, be even. Let ill consist of two identical blocks :
(Wl,W2, ... ,Wn /2,Wl,W2, ... ,Wn /2)' Clearly, if = (1,1,; .. ,1,-1,-1, ... ,-1) is a root
and G is the corresponding generator matrix.

1 0 0 0 0 0 0 -1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 -1 0 0 0 0

G=

0 0 0 0 0 1 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 -1

3 The Main Result

The following theorem states that given an integer s and a number of variables n
there exists a function of n variables and minimal weight size s.

Theorem 8 (Main Result)
For any pair (s,n) that satisfies

2. seven

, for n even
, for n odd

there exists a linear threshold function of n variables, I, with minimal weight size
8[J] = s.

Proof. Given a pair (s, n), that satisfies the above conditions we first construct
a weight vector w that satisfies E~l IWil = s, then show that it is the minimal
weight vector ofthe function I(x) = sgn(w·X). The proof is shown only for n even.

CONSTRUCTION.

1. Define (at, a2, ... , an /2) = (1,1, ... , 1).

On Neural Networks with Minimal Weights 251

n/2 . 2 2. If L,:::l a, < s/2 then increase by one the smallest a, such that a, < 2'- .
(In the case of a tie take the Wi with smallest index i).

3. Repeat the previous step until L~; ai = s /2 or (aI, a2, ... , aN) =
(1,1,2,4, ... , 2~ -2).

4. Set w= (al,a2, ... ,an /2,al,a2, ... ,an /2)'

Because we increase the size by one unit at a time the algorithm will converge to the
desired result for any integer s that satisfies n ~ s ~ 2~. We have a construction
for any valid (s, n) pair. Let us show that w is minimal.

MINIMALITY. Given that w = (aI, a2, ... , an /2, aI, a2, ... , aaj2) we find a root v =
(1, 1, ... , 1, -1, -1, ... , -1) and n/2 rows of the generator matrix G corresponding to
the equations w, = wH ~. To form additional rows note that the first k ais are

powers of two (where k depends on sand n). Those can be written as a, = L~:~ aj
and generate k - 1 rows. And finally note that all other ai, i > k, are smaller than
2k+l. Hence, they can be written as a binary expansion a, = L~:::l aijaj where
aij E {O, I}. There are -r - k such weights. G has a total of n -1 independent rows.
rank(G) = n -1 and WI = 1, therefore by Lemma 7, tV is minimal and S[J] = s. 0

Example 4 (A Function of 10 variables and size S[fJ = 26)
We start with a = (1,1,1,1,1). We iterate: (1,1,2,1,1), (1,1,2,2,1), (1,1,2,2,2),
(1,1,2, 3,2), (1,1,2,3,3) , (1,1,2,4,3), (1,1,2,4,4), and finally (1,1 , 2,4,5). The
construction algorithm converges to a = (1,1,2,4,5). We claim that tV = (a, a) =
(1,1,2,4,5,1,1,2,4,5) is minimal. Indeed, v = (1,1,1,1,1, -1, -1, -1, -1, -1) and

1 0 0 0 0 -1 0 0 0 0
0 1 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 -1 0 0
0 0 0 1 0 0 0 0 -1 0

G= 0 0 0 0 1 0 0 0 0 -1
1 0 0 0 0 0 -1 0 0 0
1 1 0 0 0 0 0 -1 0 0
1 1 1 0 0 0 0 0 -1 0
1 0 0 1 0 0 0 0 0 -1

is a matrix of rank 9.

Example 5 (Functions with Polynomial Size)

This example shows an application of Theorem 8. We define fred) as the set of
linear threshold functions for which S[I} ~ nd • The Theorem states that for any
even n there exists a function 1 of n variables and minimum weight S[I] = nd • The

-- (d- I) -- (d)
implication is that for all d, LT is a proper subset of LT

4 Conclusions

We have shown that for any reasonable pair of integers (n, s), where s is even, there
exists a linear threshold function of n variables with minimal weight size S[J} = s.
We have developed a novel technique for constructing linear threshold functions
with minimal weights that is based on the existence of root vectors. An interesting
application of our method is the computation of a lower bound on the number
of linear threshold functions [Smith 66}. In addition, our technique can help in
studying the trade-otIs between a number of important parameters associated with

252 V. BOHOSSIAN, 1. BRUCK

linear threshold (neural) circuits, including, the munber of elements, the number of
layers, the fan-in, fan-out and the size of the weights.

Acknow ledgements

This work was supported in part by the NSF Young Investigator Award CCR-
9457811, by the Sloan Research Fellowship, by a grant from the IBM Almaden
Research Center, San Jose, California, by a grant from the AT&T Foundation and
by the center for Neuromorphic Systems Engineering as a part of the National
Science Foundation Engineering Research Center Program; and by the California
Trade and Commerce Agency, Office of Strategic Technology.

References

[Amaldi 93] E. Amaldi and V. Kann. The complexity andapproximabilityoffinding
maximum feasible subsystems of linear relations. Ecole Poly technique Federale
De Lausanne Technical Report, ORWP 93/11, August 1993.

[Goldmann 92] M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. gen­
eral weighted threshold gates. Computational Complexity, (2):277-300, 1992.

[Goldman 93] M. Goldmann and M. Karpinski. Simulating threshold circuits by
majority circuits. In Proc. 25th ACM STOC, pages pp. 551- 560, 1993.

[Hastad 94] .1. Hastad. On the size of weights for threshold gates. SIAM. J. Disc.
Math., 7:484-492, 1994.

[Hopfield 82) .1. Hopfield. Neural networks and physical systems with emergent col­
lective computational abilities. Proc. of the USA National Academy of Sciences,
79:2554- 2558, 1982.

[Muroga 71) M. Muroga. Threshold Logic and its Applications. Wiley-Interscience,
1971.

[Myhill 61) J. Myhill and W. H. Kautz. On the size of weights required for linear­
input switching functions. IRE Trans. Electronic Computers, (EClO):pp. 288-
290, 1961.

[Raghavan 88] P. Raghavan. Learning in threshold networks: a computational
model and applications. Technical Report RC 13859, IBM Research, July
1988.

[Rumelhart 82] D. Rumelhart and J. McClelland. Parallel distributed processing:
Explorations in the microstructure of cognition. MIT Press, 1982.

[Shawe-Taylor 92] J. S. Shawe-Taylor, M. H. G. Anthony, and W. Kern. Classes
of feedforward neural networks and their circuit complexity. Neural Networks,
Vol. 5:pp. 971- 977, 1992.

[Siu 91] K. Siu and J. Bruck. On the power of threshold circuits with small weights.
SIAM J. Disc. Math., Vol. 4(No. 3):pp. 423-435, August 1991.

[Smith 66] D. R. Smith. Bounds on the number of threshold functions. IEEE
Transactions on Electronic Computers, June 1966.

[Willis 63] D. G. Willis. Minimum weights for threshold switches. In Switching
Theory in Space Techniques. Stanford University Press, Stanford, Calif., 1963.

