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In this paper, recursive estimation algorithms for dynamic modular 
networks are developed. The models are based on Gaussian RBF 
networks and the gating network is considered in two stages: At 
first, it is simply a time-varying scalar and in the second, it is 
based on the state, as in the mixture of local experts scheme. The 
resulting algorithm uses Kalman filter estimation for the model 
estimation and the gating probability estimation. Both, 'hard' and 
'soft' competition based estimation schemes are developed where in 
the former, the most probable network is adapted and in the latter 
all networks are adapted by appropriate weighting of the data. 

1 INTRODUCTION 

The problem of learning multiple modes in a complex nonlinear system is increas­
ingly being studied by various researchers [2, 3, 4, 5, 6], The use of a mixture of 
local experts [5, 6], and a conditional mixture density network [3] have been devel­
oped to model various modes of a system. The development has mainly been on 
model estimation from a given set of block data, with the model likelihood depen­
dent on the input to the networks. A recursive algorithm for this static case is the 
approximate iterative procedure based on the block estimation schemes [6]. 

In this paper, we consider dynamic systems - developing a recursive algorithm is 
difficult since mode transitions have to be detected on-line whereas in the block 
scheme, search procedures allow optimal detection. Block estimation schemes for 
general architectures have been described in [2, 4]. However, unlike in those schemes, 
the algorithm developed here uses relationships based on Bayes law and Kalman 
filters and attempts to describe the dynamic system explicitly, The modelling is 
carried out by radial basis function (RBF) networks for their property that by pre­
selecting the centres and widths, the problem can be reduced to a linear estimation. 
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2 DYNAMIC MODULAR RBF NETWORK 

The dynamic modular RBF network consists of a number of models (or experts) 
to represent each nonlinear mode in a dynamical system. The models are based 
on the RBF networks with Gaussian function, where the RBF centre and width 
parameters are chosen a priori and the unknown parameters are only the linear 
coefficients w. The functional form of the RBF network can be expressed as, 

K 

f(XiP) = L wkgk(X) = wT g 
k=l 

where w = [ . . . , Wk, .. Y E lRK is the linear weight vector and g 
[ ... , gk(X), .. . ]T E lR~ are the radial basis functions, where, 

(1) 

gk(X) = exp {-O.5r-21Ix - mk112} (2) 

mk E lRM are the RBF centres or means and r the width. The RBF networks 
are used for their property that having chosen appropriate RBF centre and width 
parameters mk, r, only the linear weights w need to be estimated for which fast, 
efficient and optimal algorithms exist. 

Each model has an associated probability score of being the current underlying 
model for the given observation. In the first stage of the development, this prob­
ability is not determined from parametrised gating network as in the mixture of 
local experts [5] and the mixture density network [3], but is determined on-line as it 
varies with time. In dynamic systems, time information must be taken into account 
whereas the mixture of local experts use only the state information which is not 
sufficient in general, unless the states contain the necessary information. In the 
second stage, the probability is extended to represent both the time and state infor­
mation explicitly using the expressions from the mixture of local experts. Recently, 
time and state information have been combined in developing models for dynamic 
systems such as the mixture of controllers [4] and the Input - Output HMM [2]. 
However, the scheme developed here is more explicit and is not as general as the 
above schemes and is recursive as opposed to block estimation. 

3 RECURSIVE ESTIMATION 

The problem of recursive estimation with RBF networks have been studied previ­
ously [7, 8] and the algorithms developed here is a continuation of that process. Let 
the set of input - output observations from which the model is to be estimated be, 

2 N = {zn 1 n = 1, ... , N} (3) 

where, 2N includes all observations upto the Nth data and Zn is the nth data, 

Zn = {( X n , Yn) 1 Xn E lRM , Yn E lR} ( 4 ) 

The underlying system generating the observations are assumed to be multi-modal 
(with known H modes), with each observation satisfying the nonlinear relation, 

Y = fh(X) + 1] (5) 

where 1] is the noise with unknown distribution and fh (.) : lRM 1-+ lR is the unknown 
underlying nonlinear function for the hth mode which generated the observation. 
Under assumptions of zero mean Gaussian noise and that the model can approxi­
mate the underlying function arbitrarily closely, the probability distribution, 

( I h n ) ( _1 -t {1 -11 ( h)12} P Zn W ,M = Mh, 2 n - 1 = 271") 2 Ro exp -"2Ro Yn -!h Xn; W (6) 
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is Gaussian. This is the likelihood of the observation Zn for the model Mh, which 
in our case is the GRBF network, given model parameters wand that the nth 
observation was generated by Mh. Ro is the variance of the noise TJ . In general 
however, the model generating the nth observation is unknown and the likelihood 
of the nth observation is expanded to include I~ the indicator variable, as in [6], 

H k 

p(zn"nIW,M,Zn-l) = IT [p(znlw\Mn = Mh,Zn_dp(Mn = Mhlxn,zn-l)r" 
h=l 

Bayes law can be applied to the on-line or recursive parameter estimation, 

p(WIZn,M) = p(znIW,M, Zn-dp(WIZn-l,M) 
P(ZnIZn-l,M) 

(7) 

(8) 

and the above equation is applied recursively for n = 1, ... , N . The term 
p(zn IZn-l, M) is the evidence. If the underlying system is unimodal, this will 
result in the optimal Kalman estimator and if we assign the prior probability dis­
tribution for the model parameters p(wh IMhk to be Gaussian with mean Wo and 
covariance matrix (positive definite) Po E 1R xK, which combines the likelihood 
and the prior to give the posterior probability distribution which at time n is given 
by p(whlZn, Mh) which is also Gaussian, 

p(whIZn,Mh) = (27r)-4Ip~l-t exp { _~(wh - W~fp~-l (wh - w~)} (9) 

In the multimodal case also, the estimation for the individual model parameters 
decouple naturally with the only modification being that the likelihood used for the 
parameter estimation is now based on weighted data and given by, 

h ' 1 h- 1 1 {1 1 h I h 12} p(znlw ,Mh,Zn-l)=(27r)-~(Roln )-~exp -'2Ro In Yn-ih(Xn;W) 

(10) 
The Bayes law relation (8) applies to each model. Hence, the only modification 
in the Kalman filter algorithm is that the noise variance for each model is set to 
Roh~ and the resulting equations can be found in [7]. It increases the apparent 
uncertainty in the measurement output according to how likely the model is to be 
the true underlying mode, by increasing the noise variance term of the Kalman filter 
algorithm. Note that the term p(Mn = Mhlxn, zn-l) is a time-varying scalar and 
does not influence the parameter estimation process. 

The evidence term can also be determined directly from the Kalman filter, 

where the e~ is the prediction error and R~ is the innovation variance with, 

eh 
n 

Rh 
n 

hT 
Yn - wn-1gn 

h- 1 T h 
ROln + gnP n-lgn 

(11) 

(12) 

(13) 

This is also the likelihood of the nth observation given the model M and the past 
observations Zn-l. The above equation shows that the evidence term used in 
Bayesian model selection [9] is computed recursively, but for the specific priors Ro, 
Po. On-line Bayesian model selection can be carried out by choosing many different 
priors, effectively sampling the prior space, to determine the best model to fit the 
given data, as discussed in [7]. 
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4 RECURSIVE MODEL SELECTION 

Bayes law can be invoked to perform recursive or on-line model selection and this 
has been used in the derivation of the multiple model algorithm [1] . The multiple 
model algorithm has been used for the recursive identification of dynamical nonlin­
ear systems [7]. Applying Bayes law gives the following relation: 

(14) 

which can be computed recursively for n = 1, ... , N. p(ZnIMh, Zn-1) is the likeli­
hood given in (11) and p(MhIZn) is the posterior probability of model Mh being the 
underlying model for the nth data given the observations Zn· The term p(Zn IZn-1) 
is the normalising term given by, 

H 

P(ZnI Zn-1) = Lp(znIMh,Zn-1)p(MhI Zn-1) (15) 
h=l 

The initial prior probabilities for models are assigned to be equal to 1/ H. The 
equations (11), (14) combined with the Kalman filter estimation equations is known 
as the multiple model algorithm [1] . 

Amongst all the networks that are attempting to identify the underlying system, 
the identified model is the one with the highest posterior probability p(MhIZn) at 
each time n, ie., 

(16) 

and hence can vary from time to time. This is preferred over the averaging of all the 
H models as the likelihood is multimodal and hence modal estimates are sought. 
Predictions are based on this most probable model. 

Since the system is dynamical, if the underlying model for the dynamics is known, 
it can be used to predict the estimates at the next time instant based on the current 
estimates, prior to observing the next data. Here, a first order Markov assumption 
is made for the mode transitions. Given that at the time instant n - 1 the given 
mode is j, it is predicted that the probability of the mode at time instant n being 
h is the transition probability Phj . With H modes, 2: Phj = 1. The predicted 
probability of the mode being h at time n therefore is given by, 

H 

Pnln-l(MhI Zn-1) = L Phjp(Mj IZn-1) 
j=l 

(17) 

This can be viewed as the prediction stage of the model selection algorithm. The 
predicted output of the system is obtained from the output of the model that has 
the highest predicted probability. 

Given the observation Zn, the correction is achieved through the multiple model 
algorithm of (14) with the following modification: 

p(MhIZn) = p(znIMh, Zn-1)Pnln-1(MhI Zn-1) 
p(znIZn-d 

(18) 

where modification to the prior has been made. Note that this probability is a 
time-varying scalar value and does not depend on the states. 
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5 HARD AND SOFT COMPETITION 

The development of the estimation and model selection algorithms have thus far 
assumed that the indicator variable 'Y~ is known. The 'Y~ is unknown and an 
expected value must be used in the algorithm, which is given by, 

(3h _ p(znlMn = Mh, Zn-I)Pnln_1(Mn = MhIZn-I) 
n - P(ZnI Zn-1) 

(19) 

Two possible methodologies can be used for choosing the values for 'Y~. In the first 
scheme, 

'Y~ = 1 if,B~ > ,B~ for all j 1= h, and 0 otherwise (20) 
This results in 'hard' competition where, only the model with the highest predicted 
probability undergoes adaptation using the Kalman filter algorithm while all other 
models are prevented from adapting. Alternatively, the expected value can be used 
in the algorithm, 

(21) 
which results in 'soft' competition and all models are allowed to undergo adaptation 
with appropriate data weighting as outlined in section 3. This scheme is slightly 
different from that presented in [7]. Since the posterior probabilities of each mode 
effectively indicate which mode is dominant at each time n, changes can then be 
used as means of detecting mode transitions. 

6 EXPERIMENTAL RESULTS 

The problem chosen for the experiment is learning the inverse robot kinematics used 
in [3]. This is a two link rigid arm manipulator for which, given joint arm angles 
(01 , O2 ), the end effector position in cartesian co-ordinates is given by, 

:l:1 L1 COS(Ol) - L2 COS(Ol + O2) 
:l:2 = L1 sin(Ol) - L2 sin(Ol + O2) (22) 

L1 = 0.8, L2 = 0.2 being the arm lengths. The inverse kinematics learning problem 
requires the identification of the underlying mapping from (:l:1' :l:2) - (01 , O2), 

which is bi-modal. Since the algorithm is developed for the identification of dynam­
ical systems, the data are generated with the joint angles being excited sinusoidally 
with differing frequencies within the intervals [0.3,1.2] x ['71"/2,371"/2]. The first 1000 
observations are used for training and the next 1000 observations are used for test­
ing with the adaptation turned off. The models use 28 RBFs chosen with fixed 
parameters, the centres being uniformly placed on a 7 x 4 grid. 
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Figure 1: Learning inverse kinematics (,hard' competition): Model probabilities. 

Figure 1 shows the model probabilities during training and shows the switching 
taking place between the two modes. 
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Figure 2: End effector position errors (test data) ('hard' competition) : (a) Model 
1 prediction (b) Model 2 prediction. 

Figure 2 show the end effector position errors on the test data by both models 1 and 
2 separately under the 'hard' competition scheme. The figure indicates the errors 
achieved by the best model used in the prediction - both models predicting in the 
centre of the input space where the function is multi-modal. This demonstrates 
the successful operation of the algorithm in the two RBF networks capturing some 
elements of the two underlying modes of the relationship . The best results on this 
learning task are: The RMSE on test data for this problem by the Mixture Density 

Table 1: Learning Inverse Kinematics: Results 

Hard Competition Soft Competition 
RMSE (Train) 0.0213 0.0442 
RMSE (Test) 0.0084 0.0212 

Network is 0.0053 and by a single network is 0.0578 [3]. Note however that the 
algorithm here did not use state information and used only the time dependency. 

7 PARAMETRISED GATING NETWORKS 

The model parameters were determined explicitly based on the time information in 
the dynamical system. If the gating model probabilities are expressed as a function 
of the states, similar to [6], 

H 

p(Mhlxn, Zn-l) = exp{ahT g} / L exp{ahT g} = a~ (23) 
h=l 

where a h are the gating network parameters. Note that the gating network shares 
the same basis functions as the expert models . 

This extension to the gating networks does not affect the model parameter estima­
tion procedure . The likelihood in (7) decomposes into a part for model parameter 
estimation involving output prediction error and a part for gating parameter esti­
mation involving the indicator variable Tn . The second part can be approximated 
to a Gaussian of the form, 

h 1 h-l. {1 h- 1 h h 2} P(Tnlxn,a ,Zn-d ~ (21r)-~RgO ~ exp -"2Rgo I'Yn - ani (24) 
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This approximation allows the extended Kalman filter algorithm to be used for 
gating network parameter estimation. The model selection equations of section 4 
can be applied without any modification with the new gating probabilities. The 
choice of the indicator variable 'Y~ can be based as before, resulting in either hard 
or soft competition. The necessary expressions in (21) are obtained through the 
Kalman filter estimates and the evidence values, for both the model and gating 
parameters. Note that this is different from the estimates used in [6] in the sense 
that, marginalisation over the model and gating parameters have been done here . 

8 CONCLUSIONS 

Recursive estimation algorithms for dynamic modular RBF networks have been de­
veloped . The models are based on Gaussian RBF networks and the gating is simply 
a time-varying scalar . The resulting algorithm uses Kalman filter estimation for 
the model parameters and the multiple model algorithm for the gating probability. 
Both, (hard' and (soft' competition based estimation schemes are developed where 
in the former, the most probable network is adapted and in the latter all networks 
are adapted by appropriate weighting of the data. Experimental results are given 
that demonstrate the capture of the switching in the dynamical system by the mod­
ular RBF networks. Extending the method to include the gating probability to be 
a function of the state are then outlined briefly. Work is currently in progress to 
experimentally demonstrate the operation of this extension. 
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