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Abstract

The purpose of most architecture optimization schemes is to im-
prove generalization. In this presentation we suggest to estimate
the weight saliency as the associated change in generalization error
if the weight is pruned. We detail the implementation of both an
O(N)-storage scheme extending OBD, as well as an O(N?) scheme
extending OBS. We illustrate the viability of the approach on pre-
diction of a chaotic time series.

1 BACKGROUND

Optimization of feed-forward neural networks by pruning is a well-established tool,
used in many practical applications. By careful fine tuning of the network archi-
tecture we may improve generalization, decrease the amount of computation, and
facilitate interpretation.

The two most widely used schemes for pruning of feed-forward nets are: Optimal
Brain Damage (OBD) due to (LeCun et al., 90) and the Optimal Brain Surgeon
(OBS) (Hassibi et al., 93). Both schemes are based on weight ranking according
to saliency defined as the change in training error when the particular weight is
pruned. In OBD the saliency is estimated as the direct change in training error,
i.e., without retraining of the remaining weights, while the OBS scheme includes
retraining in a local quadratic approximation. The rationale of both methods is that
if the least significant weights (according to training error) are deleted, we gracefully
relieve the danger of overfitting. However, in both cases one clearly needs a stop
criterion. As both schemes aim at minimal generalization error an estimator for this
quantity is needed. The most obvious candidate estimate is a test error estimated
on a validation set. Validation sets, unfortunately, are notoriously very noisy (see,
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e.g., the discussion in Weigend et al., 1990). Hence, an attractive alternative is to
estimate the test error by statistical means, e.g., Akaike’s FPE (Akaike, 69). For
regression type problems such a pruning stop criterion was suggested in (Svarer et
al., 93).

However, why not let the saliency itself reflect the possible improvement in test
error? This is the idea that we explore in this contribution.

2 GENERALIZATION IN REGULARIZED NEURAL
NETWORKS

The basic asymptotic estimate of the generalization error was derived by Akaike
(Akaike, 1969); the so-called Final Prediction Error (FPE). The use of FPE-theory
for neural net learning has been pioneered by Moody (see e.g. (Moody, 91)), who
derived estimators for the average generalization error in regularized networks.

Our network is a feed-forward architecture with n; input units, ngy hidden sigmoid
units and a single linear output unit, appropriate for scalar function approximation.
The initial network is fully connected between layers and implements a non-linear
mapping from input space x(k) to the real axis: y(k) = Fu(x(k)), where u =
[w, W] is the N-dimensional weight vector and y(k) is the prediction of the target
output y(k). The particular family of non-linear mappings considered can be written
as:

Fa (x(k)) = :‘f_: Wj tanh (i wji.’l,'i(k) + wjo) + W, (1)

j=1 i=1
W; are the hidden-to-output weights while w;; connect the input and hidden units.
We use the sum of squared errors to measure the network performance

)4

Bypain = 11—) S [w(k) — Fa(x(k)), (2)

k=1

where p is the number of training examples. To ensure numerical stability and to
assist the pruning procedure we augment the cost function with a regularization
term.! The resulting cost function reads

1
E = Etrain + iuTRu (3)

The main source of uncertainty in learning is the shortage of training data. Fitting
the network from a finite set of noisy examples means that the noise in these parti-
cular examples will be fitted as well and when presented with a new test example the
network will make an error which is larger than the error of the “optimal network”
trained on an infinite training set. By careful control of the fitting capabilities, e.g.,
by pruning, such overfitting may be reduced.

The generalization error is defined as the average squared error on an example from
the example distribution function P(x,y). The examples are modeled by a teacher
network with weights u*, degraded by additive noise: y(k) = Fu« (x(k))+v(k). The
noise samples v (k) are independent identically distributed variables with finite, but
unknown variance o2. Further, we assume that the noise terms are independent of
the corresponding inputs. The quantity of interest for model optimization is the
training set average of the generalization error, viz., the average over an ensemble

'R will be a positive definite diagonal matrix.
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of networks in which each network is provided with its individual training set. This
averaged generalization error is estimated by

o _ ﬁ P 2
Broe = (1+ . ) L0 ((1/p)), (4)

with the effective number of parameters being Neg = tr(HIJ"'HJ~!) (Larsen and
Hansen, 94). The Hessian, H, is the second derivative matrix of the training error
with respect to the welghts and thresholds, while J is the regularized Hessian:
J = H+R. An asymptotically unbiased estimator of the noise level is provided by:
02 = Eirain/(1 — Nest/p). Inserting, we get

o P+ Nes

Etest p— Neﬂ‘
While OBD and OBS are based on estimates of the change in Ej..;, we see that in
order to obtain saliencies that estimate the change in generalization we must gener-
ally take the prefactor into account. We note that if the network is not regularized
Neg = tr(HIJ"THJI 1) = tr(1) = N, in which case the prefactor is only a function
of the total number of weights. In this case ranking according to training error
saliency is equivalent to ranking according to generalization error.

2N,
Etrain ~ (1 + p ﬂ) Etrain- (5)

However, in the generic case of a regularized network this is no more true (Neg < N),
and we need to evaluate the change in the prefactor, i.e., in the effective number of
parameters, associated with pruning a weight. Denoting the generalization based
saliency of weight u; as Fyest 7, we find

2 (Nest — Ner,1)
p

Where the number of parameters after pruning of weight ! is Neg 1, and 8 Erain 1 is
the training error based saliency.

6Etest,l ~ 6Etrain,f -

Etrain (6)

To proceed we outline two implementations, the major difference being the computa-
tional complexity involved. In the first, which is an elaboration on the OBD scheme,
the storage complexity is proportional to the number of weights and thresholds (),
while in the second scheme the complexity scales with N2, and is a generalization of
the OBS. To emphasize that we use the generalization error for ranking of weights
we use the prefix 7: yOBD and yOBS.

3 ~OBD: AN O(N) IMPLEMENTATION

Our O(N) simulator is based on batch mode, second order pseudo-Gauss Newton
optimization which is described in (Svarer et al., 93). The scheme, being based on
the diagonal approximation for the Hessian, requires storage of a number of variables
scaling linearly with the number of parameters N. As in (Le Cun et al., 90) we
approximate the second derivative matrix by the positive semi-definite expression:

i Etmn o2 £ <6Fu x(k)))

p Ou;

b (7)

In the diagonal approximation we find

M= 3 (rfa—/;) ®)

j=1
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where A; = 02 E\rain / 8u]2 . Further, a; /p are the weight decay parameters (diagonal
elements of the regularization matrix R).

The OBD method proposed by (Le Cun et al., 90) was successfully applied to reduce
large networks for recognition of handwritten digits. The basic idea is to estimate
the increase in the training error when deleting weights. Expanding the training
error to second order in the pruned weight magnitude it is found that

Qg laQEtrain 2
p 2 Ouf )u,. ©)

This estimate takes into account that the weight decay terms force the weights
to depart from the minimum of the training set error. The first derivative of the
training error is non-zero, hence, the first term in (9). Computationally, we note
that the diagonal Hessian terms are reused from the pseudo Gauss-Newton training
scheme.

6Etrain,l = (

Using (6) and the diagonal form of Neg, we find the following approximative ex-
pression for generalization saliency (yOBD):

2 Al 2
0Ftest,1 R 0 Etrain — » (m) FEtrain (10)
From this expression we learn that of two weights inducing similar changes in train-
ing error we should delete the one which has the largest ratio of training error
curvature (A) to weight decay, i.e., the weight which has been least influenced by
weight decay. However, from a computational point of view we also want to reduce
the number of parameters as far as possible; so we might in fact accept to delete-
weights with small positive generalization saliency (in particular considering the
amount of approximation involved in the estimates).

4 ~OBS: AN O(N?) IMPLEMENTATION

In the Optimal Brain Surgeon (Hassibi et al., 92) the increase in training error is
estimated including the effects of quadratic retraining. This allows for pruning of
more general degrees of freedom, e.g., situations where the training error induces
linear constraints among two or more weights. The price to be paid is that we need
to operate with the full N x N Hessian matrix of second derivatives. The O(N?)
simulator, hence, is based on full Gauss Newton optimization. When eliminating
the I’th weight retraining is determined by

(21
(37D

where €; is the I’th unit vector. We need to modify the OBS saliencies when working
from a weight decay regularized cost function. The modified saliencies were given
in (Hansen and With, 94)?

R | u? a (uz(e;rJ“lu) B 1“12(-]_2)”>
train,l — 9 (J_l)” D (J"l)” 2 ((J_l)ll)z

obuy = J g (11)

(12)

Whether using the generalization based yOBS or standard OBS, we want to point to
an important aspect of OBS that seems not to be generally appreciated, namely the

2The expression is for the case of all weight decays being equal, see (Hansen and With,
94) for the general expression.
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problem of “nuisance” parameters (White, 89), (Larsen, 93). When eliminating an
output weight u,, all the weights to the corresponding hidden unit are in effect also
pruned away. Such a situation is well-known in the statistics literature on model
selection where such “ghost” input weights are known as nuisance parameters. It is
important to remove these parameters from the network function before estimating
the saliency 6 Et,qin o and the resulting effective number of parameters Neg, as they
would otherwise give “spurious” contributions to these estimates. Applying OBS
without taking this fact into consideration often results in sudden jumps in the level
of the network error due to pruning of an important weight based on a corrupted
saliency estimate. Removing the superfluous weights from the weight vector u and
the corresponding rows and columns in J to form the reduced (regularized) Hessian
J1 is straightforward, but it is computationally expensive to invert each of the
resulting (sub-)matrices J; for use in (11) and (12). This cost can be considerably
reduced by rearranging the rows and columns of J as

J, J _ J7YHy;, @@t
S E] - lEn e

where Jo, J3 and J4 are the rows and columns corresponding to the nuisance pa-
rameters. Using a standard lemma for partitioned matrices, we obtain

F) =@ = (@33N (I s (14)

which only calls for inversion of the (small) submatrix (J~1)4. In (Hassibi et al., 93)
it was argued that one might save on computation by using an iterative scheme for
calculation of the inverse Hessian J~1. However, since standard matrix inversion is
an O(N3) operation while the iterative scheme scales as O(pN?), a detailed count

shows that that it is only beneficial to use the iterative scheme in the atypical case
N > p/2.

5 EXPERIMENT

We will illustrate the viability of the proposed methods on a standard problem
of nonlinear dynamics viz. the Mackey-Glass chaotic time series. The series is
generated by integration of the differential equation

dz(t) z(t —71)
i = Ot e n (15)

where the constants are @ = 0.2, & = 0.1 and 7 = 17. The series is resampled
with sampling period 1 according to standard practice. The network configuration
is ny = 6, ng = 10 and we train to implement a six step ahead prediction. That
is, x(k) = [z(k — 6),2(k — 12), -, z(k — 6n )] and y(k) = z(k). In Fig. 1 we show
pruning scenarios based on the two different 1rnplementat10ns The training errors,
test errors and FPE errors are plotted for a training set size of 250 examples, the
test set comprises 8500 examples. In the left panel we show the results of pruning
according to yOBD and similarly in the right panel we show the results of pruning
as 1t occurred using yOBS. In this example we do not find significant improvement
in performance by use of yOBS.

To illustrate the ability of the estimators for predicting the effects of pruning on
the test error we plot in figure 2 the estimated test errors versus the actual test
errors after pruning. In the OBD case this means the test error resulting from
pruning the parameters without retraining, while in the OBS case it means the
test error following pruning and retraining in the quadratic approximation. We
note that the yOBD estimates of the test error approximately equal the actual
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Figure 1: The evolution of training and test errors during pruning for the Mackey-
Glass time series for a training set of size 250. In the left panel is shown pruning
by yOBD, while in the right we show pruning by yOBS. The vertical solid line
indicates the network for which the estimated test error is minimal.

test error, offset by a constant corresponding to the FPE-offset in the left panel of
figure 1. The most important feature of this plot is that ranking according to the
estimated test error is consistent with ranking according to the actual test error.
In the right panel of figure 2, however, we see that yOBS highly underestimates
the actual errors resulting from the quadratic retraining. It is not clear how the
ranking inconsistencies affect the overall performance of yOBS. The weight selected
for pruning (indicated by a circle) is clearly not the optimal according to the actual
test error. However, as depicted in the figure, after full Gauss-Newton retraining
for 20 epochs the measured actual test error is comparable to the estimated value
(retraining is indicated by the arrow). Hence, one may say that YOBS “recovers”
after retraining, while the initial estimate based on quadratic retraining is rather
poor.
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Figure 2: Left panel: Estimated test errors for fully connected network using yOBD
and the actual test errors computed by actual deletion of the weight and computing
the test error on the 8500 members test set. Right panel: Errors for fully connected
network using yOBS. The weight selected for pruning is indicated by a circle, the
result of further retraining is indicated by an arrow.
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6 CONCLUSION

Since a main objective of pruning algorithms is to improve generalization we sug-
gest that weight saliencies are estimated from the test error rather than the training
error. We have shown how this might be carried out for scalar function approxima-
tion, in which case we have a rather simple test error estimate (based on Akaike’s
FPE). We provided implementation details for a scheme of linear complexity, YOBD,
which is the generalization of OBD and a scheme of quadratic complexity YOBS
which is the generalization of OBS. Furthermore, we provided a way to significantly
reduce the computational overhead involved in the handling of nuisance parameters.
An application within time series prediction showed the viability of the suggested
approach.
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