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Abstract 

We report on our development of a high-performance system for 
neural network and other signal processing applications. We have 
designed and implemented a vector microprocessor and pack­
aged it as an attached processor for a conventional workstation. 
We present performance comparisons with commercial worksta­
tions on neural network backpropagation training. The SPERT-II 
system demonstrates significant speedups over extensively hand­
optimization code running on the workstations. 

1 Introduction 

We are working on pattern recognition problems using neural networks with a large 
number of parameters. Because of the large computational requirements of our area 
of research, we set out to design an integrated circuit that would serve as a good 
building block for our systems. Initially we considered designing extremely special­
ized chips, as this would maximize performance for a particular algorithm. However, 
the algorithms we use undergo considerable change as our research progresses. Still, 
we needed to provide some specialization if our design was to offer significant im­
provement over commercial workstation systems. Competing with workstations is 
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a challenge to anyone designing custom programmable processors, but as will be 
shown in this paper, one can still provide a performance advantage by focusing on 
one general class of computation. 

Our solution was to design a vector microprocessor, TO, optimized for fixed-point 
computations, and to package this as an inexpensive workstation accelerator board. 
In this manner, we gain a considerable performance/cost advantage for neural net­
work and other signal processing algorithms, while leveraging the commercial work­
station environment for software development and I/O services. 

In this paper, we focus on the neural network applications ofthe SPERT-II system. 
We are also investigating other applications in the areas of hum an-machine interface 
and multimedia processing, as we believe vector microprocessors show promise in 
providing the flexible, cost-effective, high-performance computing required. 

Section 2 discusses the design of the hardware, followed in Section 3 by a discussion 
of the software environment we are developing and a discussion of related systems 
in Section 4. In Section 5 we discuss how we map a backpropagation training task 
to the system and in Section 6 we compare the resulting performance with two 
commercial workstation systems. 

2 SPERT -II System 

SPERT-II is a double slot SEus card for use in Sun compatible workstations and is 
shown in Figure 1. The board contains a TO vector microprocessor and its memory, 
a Xilinx FPGA device for interfacing with the host, and various system support 
devices. 

Host Wor1<station 

SPERT·11 
Board TO Chip 

Xilinx 
FPGA 

Figure 1: SPERT-II System Organization 

2.1 The TO vector microprocessor 

Data 8MBSRAM 

Development of the TO vector microprocessor follows our earlier work on the original 
SPERT VLIW /SIMD neuro-microprocessor (Wawrzynek, 1993). The most signifi­
cant change we have made to the architecture is to move to a vector instruction set 
architecture (IS A) , based on the industry standard MIPS RISe scalar ISA (Kane, 
1992) extended with vector coprocessor instructions. The resulting ISA, which we 
call Torrent, offers important advantages over our previous design. We gain access to 
existing software tools for the MIPS architecture, including optimizing e compilers, 
assemblers, linkers, and debuggers. VLIW machines expose details of the hardware 
implementation at the instruction set level, and so must change instruction sets 
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~hen scaling to higher degrees of on-chip parallelism. In contrast, vector ISAs pro­
vide a simple abstraction of regular data parallelism that enables different hardware 
implementations to make different trade-offs between cost and performance while 
remaining software compatible. Compared with the VLIW /SIMD design, the vector 
ISA reduces requirements on instruction cache space and fetch bandwidth. It also 
makes it easier to write optimized library routines in assembly language, and these 
library routines will still run well on future devices with greater on-chip parallelism. 

In the design of the TO vector microprocessor, the main technique we employ to 
improve cost-performance over a commercial general purpose processor is to inte­
grate multiple fixed-point datapaths with a high-bandwidth memory system. Fast 
digital arithmetic units, multipliers in particular, require chip area proportional to 
the square of the number of operand bits. In modern microprocessors and digital 
signal processors a single floating-point unit takes up a significant portion ofthe chip 
area. High-precision arithmetic units also requires high memory bandwidth to move 
large operands. However, for a wide class of problems, full-precision floating-point, 
or even high-precision fixed-point arithmetic, is not needed. Studies by ourselves 
and others have shown that for error back-propagation training of neural networks, 
16-bit weights and 8-bit activation values provide similar training performance to 
IEEE single-precision floating-point (Asanovic, 1991). 

However, fast fixed-point multiply-adds alone are not sufficient to increase perfor­
mance on a wide range of problems. Other components of a complete application 
may dominate total compute time if only multiply-add operations are accelerated. 
Our processor integrates a fast general-purpose RISC core, and includes general 
purpose operations in its vector instruction set to obtain a balanced design. 

The TO processor is a complete single chip implementation of the Torrent archi­
tecture. It was fabricated in Hewlett-Packard's CMOS26B process using 1.0 pm 
scalable CMOS design rules and two layers of metal. The die measures 16.75mm x 
16.75mm, and contains 730,701 transistors. TO runs at an internal clock rate of 
40MHz. 

The main components of TO are the MIPS-II compatible RISC CPU with an on­
chip instruction cache, a vector unit coprocessor, a 128-bit wide external memory 
interface, and an 8-bit wide serial host interface (TSIP) and control unit. The 
external memory interface supports up to 4 GB of memory over a 128-bit wide data 
bus. The current SPERT-II board uses 16, 4 Mb SRAM parts to provide 8 MB of 
mam memory. 

At the core of the TO processor is a MIPS-II compatible 32-bit integer RISC pro­
cessor with a 1 KB instruction cache. The system coprocessor provides a 32-bit 
counter/timer and registers for host synchronization and exception handling. 

The vector unit contains a vector register file with 16 vector registers, each holding 
32 elements of 32 bits each, and three vector functional units, VPO, VP1, and 
VMP. VPO and VPl are vector arithmetic functional units. With the exception of 
multiplies, that must execute in VPO, either pipeline can execute any arithmetic 
operation. The multipliers perform 16-bit x 16-bit multiplies producing 32-bit 
results. All other arithmetic, logical and shift functions operate on 32 bits. VMP 
is the vector memory unit, and it handles all vector load/store operations, scalar 
load/store operations, and the vector insert/extract operations. 

All three vector functional units are composed of 8 parallel pipelines, and so can 
each produce up to 8 results per cycle. The TO memory interface has a single 
memory address port, therefore non-unit stride and indexed memory operations are 
limited to a rate of one element per cycle. 
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The elements of a vector register are striped across all 8 pipelines. With the max­
imum vector length of 32 , a vector functional unit can accept a new instruction 
every 4 cycles. TO can saturate all three vector functional units by issuing one 
instruction per cycle to each, leaving a single issue slot every 4 cycles for the scalar 
unit. In this manner, TO can sustain up to 24 operations per cycle. Several im­
portant library routines, such as matrix-vector and matrix-matrix multiplies, have 
been written which achieve this level of performance. All vector pipeline hazards 
are fully interlocked in hardware, and so instruction scheduling is only required to 
improve performance, not to ensure correctness. 

3 SPERT-II Software Environment 

The primary design goal for the SPERT-II software environment was that it should 
appear as similar as possible to a conventional workstation environment. This 
should ease the task of porting existing workstation applications, as well as provide 
a comfortable environment for developing new code. 

The Torrent instruction set architecture is based on the MIPS-II instruction set, 
with extra coprocessor instructions added to access the vector unit functionality. 
This compatibility allows us to base our software environment on the GNU tools 
which already include support for MIPS based machines. We have ported the 
gee C/C++ compiler, modified the gdb symbolic debugger to debug TO programs 
remotely from the host, enhanced the gas assembler to understand the new vector 
instructions and to schedule code to avoid interlocks, and we also employ the GNU 
linker and other library management utilities. 

Currently, the only access to the vector unit we provide is either through library 
routines or directly via the scheduling assembler. We have developed an extensive 
set of optimized vector library routines including fixed-point matrix and vector 
operations, function approximation through linear interpolation, and IEEE single 
precision floating-point emulation. The majority of the routines are written in 
Torrent assembler, although a parallel set of functions have been written in ANSI 
C to allow program development and execution on workstations. Finally, there is a 
standard C library containing the usual utility, I/O and scalar math routines. 

After compilation and linking, a TO executable is run on the SPERT-II board by 
invoking a "server" program on the host. The server loads a small operating system 
"kernel" into TO memory followed by the TO executable. While the TO application 
runs, the server services I/O requests on behalf of the TO process. 

4 Related Systems 

Several programmable digital neurocomputers have been constructed, most notably 
systems based on the CNAPS chip from Adaptive Solutions (Hammerstrom, 1990) 
and the SYNAPSE-I, based on the MA-16 chip from Siemens (Ramacher, 1991). 

The Adaptive Solutions CNAPS-I064 chip contains a SIMD array with 64 16-bit 
processing elements (PEs) per chip. Systems require an external microcode se­
quencer. The PEs have 16-bit datapaths with a single 32-bit accumulator, and are 
less flexible than the TO datapaths. This chip provides on-chip memory for 128K 
16-bit weights, distributed among the individual PEs. Off-chip memory bandwidth 
is limited by an 8-bit port. In contrast, TO integrates an on-chip CPU that acts as 
controller, and provides fast access to a external memory equally accessible by all 
datapaths thereby increasing the range of applications that can be run efficiently. 
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Like SPERT-II, the SYNAPSE-l leverages commercial memory parts. It features 
an array of MA-16 chips connected to interleaved DRAM memory banks. The MA-
16 chips require extensive external circuitry, including 68040 CPUs with attached 
arithmetic pipelines, to execute computations not supported by the MA-16 itself. 
The SYNAPSE-l system is a complex and expensive multi-board design, contain­
ing several different control streams that must be carefully orchestrated to run an 
application. However, for some applications the MA-16 could potentially provide 
greater throughput than TO as the former's more specialized architecture permits 
more multiply-add units on each chip. 

5 Mapping Backpropagation to TO 

One artificial neural network (ANN) training task that we have done is taken from 
a speaker-independent continuous speech recognition system. The ANN is a simple 
feed-forward multi-layer percept ron (MLP) with three layers. Typical MLPs have 
between 100-400 input units. The input layer is fully connected to a hidden layer of 
100-4000 hidden units. The hidden layer is fully connected to an output layer that 
contains one output per phoneme, typically 56-61. The hidden units incorporate 
a standard sigmoid activation function. The output units compute a "soft-max" 
activation function. All training is "on-line", with the weight matrices updated 
after each pattern presentation. 

All of the compute-intensive sections can be readily vectorized on TO. 

Three operations are performed on the weight matrices: forward propagation, error 
back-propagation, and weight update. These operations are available as three stan­
dard linear algebra routines in the TO library: vector-matrix multiply, matrix-vector 
multiply, and scaled outer-product accumulation, respectively. 

TO can sustain one multiply-add per cycle in each of the 8 datapath slices, and 
can support this with one 16-bit memory access per cycle to each datapath slice 
provided that vector accesses have unit stride. The loops for the matrix operations 
are rearranged to perform only unit-stride memory accesses, and memory bandwidth 
requirements are further reduced by tiling matrix accesses and reusing operands 
from the vector registers whenever possible. 

There are a number of other operations required while handling input and output 
vectors and activation values. While these require only O(n) computation versus 
the O(n2 ) requirements of the matrix operations, they would present a significant 
overhead on smaller networks if not vectorized. 

The sigmoid activation function is implemented using a library piecewise-linear 
function approximation routine. The function approximation routine makes use 
of the vector indexed load operations to perform the table lookups. Although TO 
can only execute vector indexed operations at the rate of one element transfer 
per cycle, the table lookup routine can simultaneously perform all the arithmetic 
operations for index calculation and linear interpolation in the vector arithmetic 
units, achieving a rate of one 16-bit sigmoid result every 2 cycles. Similarly, a 
table based vector logadd routine is used to implement the soft-max function, also 
producing one result every 2 cycles. 

To simplify software porting, the MLP code uses standard IEEE single-precision 
floating-point for input and output values. Vector library routines convert formats 
to the internal fixed-point representation. These conversion routines operate at the 
rate of up to 1 conversion every 2 cycles. 
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6 Performance Evaluation 

We chose two commercial RISC workstations against which to compare the perfor­
mance of the SPERT-II system. The first is a SPARCstation-20/61 containing a 
single 60 MHz SuperSPARC+ processor with a peak performance of60 MFLOPS, 1 
MB of second level cache, and 128 MB of DRAM main memory. The SPARCstation-
20/61 is representative of a current mid-range workstation. The second is an IBM 
RS/6000-590, containing the RIOS-2 chipset running at 72 MHz with a peak per­
formance of 266 MFLOPS, 256 KB of primary cache, and 768 MB of DRAM main 
memory. The RS/6000 is representative of a current high-end workstation. 

The workstation version of the code performs all input and output and all compu­
tation using IEEE single precision floating-point arithmetic. The matrix and vector 
operations within the back prop algorithm have been extensively hand optimized, 
using manual loop unrolling together with register and cache blocking. 

The SPERT-II numbers are obtained for a single TO processor running at 40 MHz 
with 8 MB of SRAM main memory. The SPERT-II version of the application main­
tains the same interface, with input and output in IEEE single precision floating­
point format, but performs all MLP computation using saturating fixed-point arith­
metic with 16-bit weights, 16-bit activation values, and 32-bit intermediate results. 
The SPERT-II timings below include the time for conversion between floating-point 
and fixed-point for input and output. 

Figure 2 shows the performance of the three systems for a set of three-layer net­
works on both backpropagation training and forward propagation. For ease of 
presentation we use networks with the same number of units per layer . Table 1 
presents performance results for two speech network architectures . The general 
trend we observe in these evaluations is that for small networks the three hardware 
systems exhibit similar performance, while for larger network sizes the SPERT-II 
system demonstrates a significant performance advantage. For large networks the 
SPERT-II system demonstrates roughly 20-30 times the performance of a SPARC20 
workstation and 4-6 times the performance of the IBM RS/6000-590 workstation. 
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Figure 2: Performance Evaluation Results (all layers the same size). 

Table 1: Performance Evaluation for Selected Net Sizes. 

net size IBM 
net type (in x hidden x out) SPERT-II SPARC20 RS/6000-590 

Forward Pass (MCPS) 
small speech net 153 x 200 x 56 181 17.6 43.0 
large speech net 342 x 4000 x 61 276 11.3 45.1 

Training (MCUPS) 
small speech net 153 x 200 x 56 55.8 7.00 16.7 
large speech net 342 x 4000 x 61 78 .7 4.18 17.2 
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