
SPERT-II: A Vector Microprocessor
System and its Application to Large

Problems in Backpropagation Training

John Wawrzynek, Krste Asanovic, & Brian Kingsbury
University of California at Berkeley

Department of Electrical Engineering and Computer Sciences
Berkeley, CA 94720-1776

{johnw ,krste,bedk }@cs.berkeley.edu

James Beck, David Johnson, & Nelson Morgan
International Computer Science Institute

1947 Center Street, Suite 600
Berkeley, CA 94704-1105

{beck,davidj,morgan}@icsi.berkeley.edu

Abstract

We report on our development of a high-performance system for
neural network and other signal processing applications. We have
designed and implemented a vector microprocessor and pack­
aged it as an attached processor for a conventional workstation.
We present performance comparisons with commercial worksta­
tions on neural network backpropagation training. The SPERT-II
system demonstrates significant speedups over extensively hand­
optimization code running on the workstations.

1 Introduction

We are working on pattern recognition problems using neural networks with a large
number of parameters. Because of the large computational requirements of our area
of research, we set out to design an integrated circuit that would serve as a good
building block for our systems. Initially we considered designing extremely special­
ized chips, as this would maximize performance for a particular algorithm. However,
the algorithms we use undergo considerable change as our research progresses. Still,
we needed to provide some specialization if our design was to offer significant im­
provement over commercial workstation systems. Competing with workstations is

620 J. WAWRZYNEK, K. ASANOVIC, B. KINGSBURY, J. BECK, D. JOHNSON, N. MORGAN

a challenge to anyone designing custom programmable processors, but as will be
shown in this paper, one can still provide a performance advantage by focusing on
one general class of computation.

Our solution was to design a vector microprocessor, TO, optimized for fixed-point
computations, and to package this as an inexpensive workstation accelerator board.
In this manner, we gain a considerable performance/cost advantage for neural net­
work and other signal processing algorithms, while leveraging the commercial work­
station environment for software development and I/O services.

In this paper, we focus on the neural network applications ofthe SPERT-II system.
We are also investigating other applications in the areas of hum an-machine interface
and multimedia processing, as we believe vector microprocessors show promise in
providing the flexible, cost-effective, high-performance computing required.

Section 2 discusses the design of the hardware, followed in Section 3 by a discussion
of the software environment we are developing and a discussion of related systems
in Section 4. In Section 5 we discuss how we map a backpropagation training task
to the system and in Section 6 we compare the resulting performance with two
commercial workstation systems.

2 SPERT -II System

SPERT-II is a double slot SEus card for use in Sun compatible workstations and is
shown in Figure 1. The board contains a TO vector microprocessor and its memory,
a Xilinx FPGA device for interfacing with the host, and various system support
devices.

Host Wor1<station

SPERT·11
Board TO Chip

Xilinx
FPGA

Figure 1: SPERT-II System Organization

2.1 The TO vector microprocessor

Data 8MBSRAM

Development of the TO vector microprocessor follows our earlier work on the original
SPERT VLIW /SIMD neuro-microprocessor (Wawrzynek, 1993). The most signifi­
cant change we have made to the architecture is to move to a vector instruction set
architecture (IS A) , based on the industry standard MIPS RISe scalar ISA (Kane,
1992) extended with vector coprocessor instructions. The resulting ISA, which we
call Torrent, offers important advantages over our previous design. We gain access to
existing software tools for the MIPS architecture, including optimizing e compilers,
assemblers, linkers, and debuggers. VLIW machines expose details of the hardware
implementation at the instruction set level, and so must change instruction sets

SPERT-II: A Vector Microprocessor System 621

~hen scaling to higher degrees of on-chip parallelism. In contrast, vector ISAs pro­
vide a simple abstraction of regular data parallelism that enables different hardware
implementations to make different trade-offs between cost and performance while
remaining software compatible. Compared with the VLIW /SIMD design, the vector
ISA reduces requirements on instruction cache space and fetch bandwidth. It also
makes it easier to write optimized library routines in assembly language, and these
library routines will still run well on future devices with greater on-chip parallelism.

In the design of the TO vector microprocessor, the main technique we employ to
improve cost-performance over a commercial general purpose processor is to inte­
grate multiple fixed-point datapaths with a high-bandwidth memory system. Fast
digital arithmetic units, multipliers in particular, require chip area proportional to
the square of the number of operand bits. In modern microprocessors and digital
signal processors a single floating-point unit takes up a significant portion ofthe chip
area. High-precision arithmetic units also requires high memory bandwidth to move
large operands. However, for a wide class of problems, full-precision floating-point,
or even high-precision fixed-point arithmetic, is not needed. Studies by ourselves
and others have shown that for error back-propagation training of neural networks,
16-bit weights and 8-bit activation values provide similar training performance to
IEEE single-precision floating-point (Asanovic, 1991).

However, fast fixed-point multiply-adds alone are not sufficient to increase perfor­
mance on a wide range of problems. Other components of a complete application
may dominate total compute time if only multiply-add operations are accelerated.
Our processor integrates a fast general-purpose RISC core, and includes general
purpose operations in its vector instruction set to obtain a balanced design.

The TO processor is a complete single chip implementation of the Torrent archi­
tecture. It was fabricated in Hewlett-Packard's CMOS26B process using 1.0 pm
scalable CMOS design rules and two layers of metal. The die measures 16.75mm x
16.75mm, and contains 730,701 transistors. TO runs at an internal clock rate of
40MHz.

The main components of TO are the MIPS-II compatible RISC CPU with an on­
chip instruction cache, a vector unit coprocessor, a 128-bit wide external memory
interface, and an 8-bit wide serial host interface (TSIP) and control unit. The
external memory interface supports up to 4 GB of memory over a 128-bit wide data
bus. The current SPERT-II board uses 16, 4 Mb SRAM parts to provide 8 MB of
mam memory.

At the core of the TO processor is a MIPS-II compatible 32-bit integer RISC pro­
cessor with a 1 KB instruction cache. The system coprocessor provides a 32-bit
counter/timer and registers for host synchronization and exception handling.

The vector unit contains a vector register file with 16 vector registers, each holding
32 elements of 32 bits each, and three vector functional units, VPO, VP1, and
VMP. VPO and VPl are vector arithmetic functional units. With the exception of
multiplies, that must execute in VPO, either pipeline can execute any arithmetic
operation. The multipliers perform 16-bit x 16-bit multiplies producing 32-bit
results. All other arithmetic, logical and shift functions operate on 32 bits. VMP
is the vector memory unit, and it handles all vector load/store operations, scalar
load/store operations, and the vector insert/extract operations.

All three vector functional units are composed of 8 parallel pipelines, and so can
each produce up to 8 results per cycle. The TO memory interface has a single
memory address port, therefore non-unit stride and indexed memory operations are
limited to a rate of one element per cycle.

622 J. WAWRZYNEK, K. ASANOVIC, B. KINGSBURY, J. BECK, D. JOHNSON, N. MORGAN

The elements of a vector register are striped across all 8 pipelines. With the max­
imum vector length of 32 , a vector functional unit can accept a new instruction
every 4 cycles. TO can saturate all three vector functional units by issuing one
instruction per cycle to each, leaving a single issue slot every 4 cycles for the scalar
unit. In this manner, TO can sustain up to 24 operations per cycle. Several im­
portant library routines, such as matrix-vector and matrix-matrix multiplies, have
been written which achieve this level of performance. All vector pipeline hazards
are fully interlocked in hardware, and so instruction scheduling is only required to
improve performance, not to ensure correctness.

3 SPERT-II Software Environment

The primary design goal for the SPERT-II software environment was that it should
appear as similar as possible to a conventional workstation environment. This
should ease the task of porting existing workstation applications, as well as provide
a comfortable environment for developing new code.

The Torrent instruction set architecture is based on the MIPS-II instruction set,
with extra coprocessor instructions added to access the vector unit functionality.
This compatibility allows us to base our software environment on the GNU tools
which already include support for MIPS based machines. We have ported the
gee C/C++ compiler, modified the gdb symbolic debugger to debug TO programs
remotely from the host, enhanced the gas assembler to understand the new vector
instructions and to schedule code to avoid interlocks, and we also employ the GNU
linker and other library management utilities.

Currently, the only access to the vector unit we provide is either through library
routines or directly via the scheduling assembler. We have developed an extensive
set of optimized vector library routines including fixed-point matrix and vector
operations, function approximation through linear interpolation, and IEEE single
precision floating-point emulation. The majority of the routines are written in
Torrent assembler, although a parallel set of functions have been written in ANSI
C to allow program development and execution on workstations. Finally, there is a
standard C library containing the usual utility, I/O and scalar math routines.

After compilation and linking, a TO executable is run on the SPERT-II board by
invoking a "server" program on the host. The server loads a small operating system
"kernel" into TO memory followed by the TO executable. While the TO application
runs, the server services I/O requests on behalf of the TO process.

4 Related Systems

Several programmable digital neurocomputers have been constructed, most notably
systems based on the CNAPS chip from Adaptive Solutions (Hammerstrom, 1990)
and the SYNAPSE-I, based on the MA-16 chip from Siemens (Ramacher, 1991).

The Adaptive Solutions CNAPS-I064 chip contains a SIMD array with 64 16-bit
processing elements (PEs) per chip. Systems require an external microcode se­
quencer. The PEs have 16-bit datapaths with a single 32-bit accumulator, and are
less flexible than the TO datapaths. This chip provides on-chip memory for 128K
16-bit weights, distributed among the individual PEs. Off-chip memory bandwidth
is limited by an 8-bit port. In contrast, TO integrates an on-chip CPU that acts as
controller, and provides fast access to a external memory equally accessible by all
datapaths thereby increasing the range of applications that can be run efficiently.

SPERT-n: A Vector Microprocessor System 623

Like SPERT-II, the SYNAPSE-l leverages commercial memory parts. It features
an array of MA-16 chips connected to interleaved DRAM memory banks. The MA-
16 chips require extensive external circuitry, including 68040 CPUs with attached
arithmetic pipelines, to execute computations not supported by the MA-16 itself.
The SYNAPSE-l system is a complex and expensive multi-board design, contain­
ing several different control streams that must be carefully orchestrated to run an
application. However, for some applications the MA-16 could potentially provide
greater throughput than TO as the former's more specialized architecture permits
more multiply-add units on each chip.

5 Mapping Backpropagation to TO

One artificial neural network (ANN) training task that we have done is taken from
a speaker-independent continuous speech recognition system. The ANN is a simple
feed-forward multi-layer percept ron (MLP) with three layers. Typical MLPs have
between 100-400 input units. The input layer is fully connected to a hidden layer of
100-4000 hidden units. The hidden layer is fully connected to an output layer that
contains one output per phoneme, typically 56-61. The hidden units incorporate
a standard sigmoid activation function. The output units compute a "soft-max"
activation function. All training is "on-line", with the weight matrices updated
after each pattern presentation.

All of the compute-intensive sections can be readily vectorized on TO.

Three operations are performed on the weight matrices: forward propagation, error
back-propagation, and weight update. These operations are available as three stan­
dard linear algebra routines in the TO library: vector-matrix multiply, matrix-vector
multiply, and scaled outer-product accumulation, respectively.

TO can sustain one multiply-add per cycle in each of the 8 datapath slices, and
can support this with one 16-bit memory access per cycle to each datapath slice
provided that vector accesses have unit stride. The loops for the matrix operations
are rearranged to perform only unit-stride memory accesses, and memory bandwidth
requirements are further reduced by tiling matrix accesses and reusing operands
from the vector registers whenever possible.

There are a number of other operations required while handling input and output
vectors and activation values. While these require only O(n) computation versus
the O(n2) requirements of the matrix operations, they would present a significant
overhead on smaller networks if not vectorized.

The sigmoid activation function is implemented using a library piecewise-linear
function approximation routine. The function approximation routine makes use
of the vector indexed load operations to perform the table lookups. Although TO
can only execute vector indexed operations at the rate of one element transfer
per cycle, the table lookup routine can simultaneously perform all the arithmetic
operations for index calculation and linear interpolation in the vector arithmetic
units, achieving a rate of one 16-bit sigmoid result every 2 cycles. Similarly, a
table based vector logadd routine is used to implement the soft-max function, also
producing one result every 2 cycles.

To simplify software porting, the MLP code uses standard IEEE single-precision
floating-point for input and output values. Vector library routines convert formats
to the internal fixed-point representation. These conversion routines operate at the
rate of up to 1 conversion every 2 cycles.

624 J. WAWRZYNEK, K. ASANOVIC, B. KINGSBURY, J. BECK, D. JOHNSON, N. MORGAN

6 Performance Evaluation

We chose two commercial RISC workstations against which to compare the perfor­
mance of the SPERT-II system. The first is a SPARCstation-20/61 containing a
single 60 MHz SuperSPARC+ processor with a peak performance of60 MFLOPS, 1
MB of second level cache, and 128 MB of DRAM main memory. The SPARCstation-
20/61 is representative of a current mid-range workstation. The second is an IBM
RS/6000-590, containing the RIOS-2 chipset running at 72 MHz with a peak per­
formance of 266 MFLOPS, 256 KB of primary cache, and 768 MB of DRAM main
memory. The RS/6000 is representative of a current high-end workstation.

The workstation version of the code performs all input and output and all compu­
tation using IEEE single precision floating-point arithmetic. The matrix and vector
operations within the back prop algorithm have been extensively hand optimized,
using manual loop unrolling together with register and cache blocking.

The SPERT-II numbers are obtained for a single TO processor running at 40 MHz
with 8 MB of SRAM main memory. The SPERT-II version of the application main­
tains the same interface, with input and output in IEEE single precision floating­
point format, but performs all MLP computation using saturating fixed-point arith­
metic with 16-bit weights, 16-bit activation values, and 32-bit intermediate results.
The SPERT-II timings below include the time for conversion between floating-point
and fixed-point for input and output.

Figure 2 shows the performance of the three systems for a set of three-layer net­
works on both backpropagation training and forward propagation. For ease of
presentation we use networks with the same number of units per layer . Table 1
presents performance results for two speech network architectures . The general
trend we observe in these evaluations is that for small networks the three hardware
systems exhibit similar performance, while for larger network sizes the SPERT-II
system demonstrates a significant performance advantage. For large networks the
SPERT-II system demonstrates roughly 20-30 times the performance of a SPARC20
workstation and 4-6 times the performance of the IBM RS/6000-590 workstation.

Acknowledgements

Thanks to Jerry Feldman for his contribution to the design of the SPERT-II system,
Bertrand Irrisou for his work on the TO chip, John Hauser for Torrent libraries, and
John Lazzaro for his advice on chip and system building. Primary support for this
work was from the ONR, URI Grant N00014-92-J-1617 and ARPA contract number
N0001493-C0249. Additional support was provided by the NSF and ICS!.

SPERT-II: A Vector Microprocessor System

Forward Pass
300.-------------------------~

<:I""'i-\\
S~<-

250 •.. •. •.

fii200
Il. o
~150
"C
CD
CD

c%loo
'BM RS/6000

Training
80

St>Ef\i-\\

~80
C/)
Il.

B
:::!;
~40

al
CD a.

C/)

625

20 ······················· ··· ··· ····· ····· ··· ·'BM·RSisooo
50 . ••.......•...........•. •.... "

--------------------SPARC20/61
oL=~==~~~==~==~ L::======~====:L===S=PA~R~C~2~~6~1~ o

o 200 400 600 800 1,000 o 200 400 600 800 1,000

Layer Size Layer Size

Figure 2: Performance Evaluation Results (all layers the same size).

Table 1: Performance Evaluation for Selected Net Sizes.

net size IBM
net type (in x hidden x out) SPERT-II SPARC20 RS/6000-590

Forward Pass (MCPS)
small speech net 153 x 200 x 56 181 17.6 43.0
large speech net 342 x 4000 x 61 276 11.3 45.1

Training (MCUPS)
small speech net 153 x 200 x 56 55.8 7.00 16.7
large speech net 342 x 4000 x 61 78 .7 4.18 17.2

References

Krste Asanovic and Nelson Morgan. Experimental Determination of Precision Re­
quirements for Back-Propagation Training of Artificial Neural Networks. In Proc.
2nd Inti. Conf. on Microelectronics for Neural Networks, Munich, Oct. 1991.

D. Hammerstrom. A VLSI architecture for High-Performance, Low-Cost, On-Chip
Learning. In Proc. Intl. Joint Cant on Neural Networks, pages 11-537-543, 1990.

G. Kane, and Heinrich, J . MIPS RISC Architecture. Prentice Hall, 1992.

U. Ramacher, J. Beichter, W. Raab, J. Anlauf, N. Bruls, M. Hachmann, and
M. Wesseling. Design of a 1st Generation Neurocomputer. In VLSI Design of
Neural Networks. Kluwer Academic, 1991.

J. Wawrzynek, K. Asanovic, and N. Morgan. The Design ofa Neuro-Microprocessor.
IEEE Journal on Neural Networks, 4(3), 1993.

