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Abstract 

A statistical theory for overtraining is proposed. The analysis 
treats realizable stochastic neural networks, trained with Kullback­
Leibler loss in the asymptotic case. It is shown that the asymptotic 
gain in the generalization error is small if we perform early stop­
ping, even if we have access to the optimal stopping time. Consider­
ing cross-validation stopping we answer the question: In what ratio 
the examples should be divided into training and testing sets in or­
der to obtain the optimum performance. In the non-asymptotic 
region cross-validated early stopping always decreases the general­
ization error. Our large scale simulations done on a CM5 are in 
nice agreement with our analytical findings. 

1 Introduction 

Training multilayer neural feed-forward networks, there is a folklore that the gen­
eralization error decreases in an early period of training, reaches the minimum and 
then increases as training goes on, while the training error monotonically decreases. 
Therefore, it is considered advantageous to stop training at an adequate time or to 
use regularizers (Hecht-Nielsen [1989), Hassoun [1995), Wang et al. [1994)' Poggio 
and Girosi [1990), Moody [1992)' LeCun et al. [1990] and others). To avoid over­
training, the following stopping rule has been proposed based on cross-validation: 
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Divide all the available examples into two disjoint sets. One set is used for train­
ing. The other set is used for testing such that the behavior of the trained network 
is evaluated by using the test examples and training is stopped at the point that 
minimizes the testing error. 
The present paper gives a mathematical analysis of the so-called overtraining phe­
nomena to elucidate the folklore. We analyze the asymptotic case where the number 
t of examples are very large. Our analysis treats 1) a realizable stochastic machine, 
2) Kullback-Leibler loss (negative ofthe log likelihood loss), 3) asymptotic behavior 
where the number t of examples is sufficiently large (compared with the number m 
of parameters). We firstly show that asymptotically the gain of the generalization 
error is small even if we could find the optimal stopping time. We then answer the 
question: In what ratio, the examples should be divided into training and testing 
sets in order to obtain the optimum performance. We give a definite answer to this 
problem. When the number m of network parameters is large, the best strategy is 
to use almost all t examples in the training set and to use only l/v2m examples 
in the testing set, e.g. when m = 100, this means that only 7% of the training 
patterns are to be used in the set determining the point for early stopping. 
Our analytic results were confirmed by large-scale computer simulations of three­
layer continuous feedforward networks where the number m of modifiable param­
eters are m = 100. When t > 30m, the theory fits well with simulations, showing 
cross-validation is not necessary, because the generalization error becomes worse 
by using test examples to obtain an adaequate stopping time. For an intermediate 
range, where t < 30m overtraining occurs surely and the cross-validation stopping 
improves the generalization ability strongly. 

2 Stochastic feedforward networks 

Let us consider a stochastic network which receives input vector x and emits 
output vector y. The network includes a modifiable vector parameter w = 
(WI,"', wm ) and is denoted by N(w). The input-output relation of the net­
work N(w) is specified by the conditional probability p(Ylx; w). We assume (a) 
that there exists a teacher network N(wo) which generates training examples 
for the student N(w). And (b) that the Fisher information matrix Gij(w) = 

E [a~. logp(x, y; w) a~j logp(x, y; w)] exists, is non-degenerate and is smooth in 

w, where E denotes the expectation with respect to p(x, Y; w) = q(x)p(Ylx; w). 
The training set Dt = {(Xl, YI), ... , (Xt, Yt)} consists of t independent examples 
generated by the distribution p(x, Y; wo) of N(wo). The maximum likelihood es­
timator (m.l.e.) Vi is the one that maximizes the likelihood of producing D t , or 
equivalently minimizes the training error or empirical risk function 

1 t 

Rtrain(w) = -i I:logp(xi,Yi;w). (2.1) 
i=l 

The generalization error or risk function R(w) of network N(w) is the expectation 
with respect to the true distribution, 

R(w) = -Eo[logp(x, Y; w)] = Ho+D(wo II w) = Ho+Eo [log p~x, Y; wojJ, (2.2) 
p x,y;w 

where Eo denotes the expectation with respect to p(x, Y; wo), Ho is the entropy 
of the teacher network and D(wo II w) is the Kullback-Leibler divergence from 
probability distribution p(x,y;wo) to p(x,y;w) or the divergence of N(w) from 
N(wo). Hence, minimizing R(w) is equivalent to minimizing D(wo II w), and the 
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minimum is attained at w = Wo. The asymptotic theory of statistics proves that the 
m.l.e. Wt is asymptotically subject to the normal distribution with mean Wo and 
variance G-1 It, where G-1 is the inverse of the Fisher information matrix G. We 
can expand for example the risk R(w) = Ho+ t(w -wo)TG(wo)(w -wo) + 0 (/2) 
to obtain 

(Rgen(w)) = Ho + ~ + 0 C~ ), (Rtrain(w)) = Ho - ~ + 0 C~), (2.3) 

as asymptotic result for training and test error (see Murata et al. [1993] and Amari 
and Murata [1990)) . An extension of (2.3) including higher order corrections was 
recently obtained by M liller et al. [1995]. 
Let us consider the gradient descent learning rule (Amari [1967], Rumelhart et al. 
[1986], and many others), where the parameter w(n) at the nth step is modified by 

w(n + 1) = w(n) _ € f)Rtr~~(wn) , (2.4) 

and where € is a small positive constant. This is batch learning where all the 
training examples are used for each iteration of modifying w( n).l The batch process 
is deterministic and w( n) converges to W, provided the initial w(O) is included in 
its basin of attraction. For large n we can argue, that w(n) is approaching w 
isotropically and the learning trajectory follows a linear ray towards w (for details 
see Amari et al. [1995]). 

3 Virtual optimal stopping rule 

During learning as the parameter w(n) approaches W, the generalization behavior 
of network N {w(n)} is evalulated by the sequence R(n) = R{w(n)}, n = 1,2, . .. 
The folklore says that R(n) decreases in an early period oflearning but it increases 
later. Therefore, there exists an optimal stopping time n at which R(n) is mini­
mized. The stopping time nopt is a random variable depending on wand the initial 
w(O) . We now evaluate the ensemble average of (R(nopd). 
The true Wo and the m.l.e. ware in general different, and they are apart of order 
1/Vt. Let us compose a sphere S of which the center is at (1/2)(wo+w) and which 
passes through both Wo and W, as shown in Fig.1b. Its diameter is denoted by d, 
where d2 = Iw - Wo 12 and 

Eo [d2] Eo[(w - wo? G- 1(w - wo)] = ~tr(G-1G) = m. (3 .1) 
t t 

Let A be the ray, that is the trajectory w(n) starting at w(O) which is not in the 
neighborhood of Wo . The optimal stopping point w" that minimizes 

R(n) = Ho + ~Iw(n) - wol2 (3.2) 

is given by the first intersection of the ray A and the sphere S. 
Since w" is the point on A such that Wo - w" is orthogonal to A, it lies on the 
sphere S (Fig.1b). When ray A' is approaching w from the opposite side ofwo (the 
right-hand side in the figure), the first intersection point is w itself. In this case, 
the optimal stopping never occurs until it converges to W. 
Let () be the angle between the ray A and the diameter Wo - w of the sphere S. 
We now calculate the distribution of () when the rays are isotropically distributed. 

lWe can alternatively use on-line learning, studied by Amari [1967], Heskes and Kappen 
[1991] , and recently by Barkai et al. [1994] and SolI a and Saard [1995]. 
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Lemma 1. When ray A is approaching V. from the side in which Wo is included, the 
probability density of 0, 0 :::; 0 :::; 7r /2, is given by 

1 17r/2 
reO) = -- sinm- 2 0, where 1m = sinm OdO. 

1m-2 0 
(3.3) 

The det,ailed proof of this lemma can be found in Amari et aI. [1995]. Using the 
density of 0 given by Eq.(3.3) and we arrive at the following theorem. 

Theorem 1. The average generalization error at the optimal stopping point is 
given by 

(3.4) 

Proof When ray A is at angle 0, 0 :::; 0 < 7r /2, the optimal stopping point w* is on 
the sphere S. It is easily shown that Iw* - wol = dsinO. This is the case where A 
is from the same side as Wo (from the left-hand side in Fig.l b), which occurs with 
probability 0.5, and the average of (d sin 0)2 is 

Eo[(dsinO?] Eo[d2
] r/\in2 Osinm- 2 OdO = m ~ = m (1- ~). 

1m - 2 Jo t 1m-2 t m 
When 0 is 7r/2 :::; 0 :::; 7r, that is A approaches V. from the opposite side, it does 
not stop until it reaches V., so that Iw* - Wo 12 = IV. - Wo I = d2 • This occurs with 
probability 0.5. Hence, we proved the theorem. 

The theorem shows that, if we could know the optimal stopping time nopt for 
each trajectory, the generalization error decreases by 1/2t, which has an effect of 
decreasing the effective dimensions by 1/2. This effect is neglegible when m is large. 
The optimal stopping time is of the order logt. However, it is impossible to know 
the optimal stopping time. If we stop learning at an estimated optimal time nopt, 
we have a small gain when the ray A is from the same side as Wo but we have 
some loss when ray A is from the opposite direction. This shows that the gain is 
even smaller if we use a common stopping time iiopt independent of V. and w(O) as 
proposed by Wang et aI. [1994]. However, the point is that there is neither direct 
means to estimate nopt nor iiopt rather than for example cross-validation. Hence, 
we analyze cross-validation stopping in the following . 

4 Optimal stopping by cross-validation 

The present section studies asymptotically two fundamental problems: 1) Given t 
examples , how many examples should be used in the training set and how many 
in the testing set? 2) How much gain can one expect by the above cross-validated 
stopping? 
Let us divide t examples into rt examples of the training set and r't examples of the 
testing set, where r + r' = 1. Let V. be the m.I.e. from rt training examples, and let 
w be the m .I.e. from the other r't testing examples. Since the training examples 
and testing examples are independent, V. and ware subject to independent nor­
mal distributions with mean Wo and covariance matrices G-1/(rt) and G-l/(r't), 
respecti vely. 
Let us compose the triangle with vertices Wo, V. and w. The trajectory A starting 
at w(O) enters V. linearly in the neighborhood. The point w" on the trajectory A 
which minimizes the testing error is the point on A that is closest to W, since the 
testing error defined by 

1 
Rtest(w) = r't ~{-logp(xi'Yi; w)}, (4.1) 

t 
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where summation is taken over r't testing examples, can be expanded as 

Rtest(w) == Ho - ~Iw - wol 2 + ~Iw - w1 2 . (4.2) 

Let S be the sphere centered at (w + w)/2 and passing through both wand w. 
It 's diameter is given by d == Iw - wi. Then, the optimal stopping point w* is 
given by the intersection of the trajectory A and sphere S . When the trajectory 
comes from the opposite side of W, it does not intersect S until it converges to w, 
so that the optimal point is w* == w in this case. Omitting the detailed proof, the 
generalization error of w* is given by Eq.(??) , so that we calculate the expectation 

E[lw* -woI 2] == m _ ~ (~_~). 
tr 2t l' 1" 

Lemma 2. The average generalization error by the optimal cross-validated stopping 
IS 

* 2m - 1 1 
(R(w ,1')) = Ho + 4rt + 4r't 

We can then calculate the optimal division rate 

J2m -1-1 
ropt = 1 - 2(m _ 1) 

1 
and ropt = 1 - J2m (large m limit). 

( 4.3) 

( 4.4) 

of examples, which minimizes the generalization error. So for large m only 
(1/J2m) x 100% of examples should be used for testing and all others for training. 
For example, when m = 100, this shows that 93% of examples are to be used for 
training and only 7% are to be kept for testing. From Eq.( 4.4) we obtain as optimal 
generalization error for large m 

(R(w', ropt» = Ho +; (1 + If) . ( 4.5) 

This shows that the generalization error asymptotically increases slightly by cross­
validation compared with non-stopped learning which is using all the examples for 
training. 

5 Simulations 

We use standard feed-forward classifier networks with N inputs, H sigmoid hidden 
units and M softmax outputs (classes). The output activity 0/ of the lth output 
unit is calculated via the softmax squashing function 

_ . _ _ exp(h/) 
p(y·-GI!x,w)-O/-l 2: (h )' /=l ,·· ·,M, + k exp k 

where h? = Lj wg Sj - '19? is the local field potential. Each output 0/ codes the a­
posteriori probability of being in class G/, 0 0 denotes a zero class for normalization 
purposes. The m network parameters consist of biases '19 and weights w . When x 
is input, the activity of the j-th hidden unit is 

N 

Sj = [1 + exp( - L Wf{:Xk - 'I9.f)]-I , j = 1, .. " H . 

k=1 

The input layer is connected to the hidden layer via w H , the hidden layer is con­
nected to the output layer via wo, but no short-cut connections are present . Al­
though the network is completely deterministic, it is constructed to approximate 
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class conditional probabilities (Finke and Miiller [1994]) . 
The examples {(x}, yd, .. " (Xt , Yt)} are produced randomly, by drawing Xi, i = 
1, .. . , t, from a uniform distribution independently and producing the labels Yi 
stochastically from the teacher classifier . Conjugate gradient learning with line­
search on the empirical risk function Eq.(2.1) is applied, starting from some ran­
dom initial vector . The generalization ability is measured using Eq. (2.2) on a large 
test set (50000 patterns). Note that we use Eq. (2.1) on the cross-validation set , 
because only the empirical risk is available on the cross-validation set in a practical 
situation. We compare the generalisation error for the settings: exhaustive training 
(no stopping), early stopping (controlled by the cross-validation set) and optimal 
stopping (controlled by the large testset) . The simulations were performed on a 
parallel computer (CM5). Every curve in the figures takes about 8h of computing 
time on a 128 respectively 256 partition of the CM5, i.e. we perform 128-256 paral­
lel trials . This setting enabled us to do extensive statistics (cf. Amari et al. [1995]) . 
Fig. la shows the results of simulations, where N = 8, H = 8, M = 4, so that 
the number m of modifiable parameters is m = (N + I)H + (H + I)M = 108. We 
observe clearly, that saturated learning without early stopping is the best in the 
asymptotic range of t > 30m, a range which is due to the limited size of the data 
sets often unaccessible in practical applications . Cross-validated early stopping does 
not improve the generalization error here, so that no overtraining is observed on 
the average in this range. In the asymptotic area (figure 1) we observe that the 
smaller the percentage of the training set , which is used to determine the point of 
early stopping, the better the performance of the generalization ability. When we 
use cross-validation, the optimal size of the test set is about 7% of all the examples , 
as the theory predicts . 
Clearly, early stopping does improve the generalization ability to a large extent in 
an intermediate range for t < 30m (see Miiller et al. [1995]) . Note , that our the­
ory also gives a good estimate of the optimal size of the early stopping set in this 
intermediate range. 
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Figure 1: (a) R(w) plotted as a function of lit for different sizes r' of the early 
stopping set for an 8-8-4 classifier network. opt. denotes the use of a very large 
cross-validation set (50000) and no stopping adresses the case where 100% of the 
training set is used for exhaustive learning. (b) Geometrical picture to determine 
the optimal stopping point w* . 
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6 Conclusion 

We proposed an asymptotic theory for overtraining. The analysis treats realizable 
stochastic neural networks, trained with Kullback-Leibler loss. 
It is demonstrated both theoretically and in simulations that asymptotically the gain 
in the generalization error is small if we perform early stopping, even if we have 
access to the optimal stopping time. For cross-validation stopping we showed for 
large m that optimally only r~pt = 1/ J2m examples should be used to determine 
the point of early stopping in order to obtain the best performance. For example, 
if m = 100 this corresponds to using 93% of the t training patterns for training and 
only 7% for testing where to stop. Yet, even if we use rapt for cross-validated stop­
ping the generalization error is always increased comparing to exhaustive training. 
Nevertheless note, that this range is due to the limited size of the data sets often 
unaccessible in practical applications. 
In the non-asymptotic region simulations show that cross-validated early stopping 
always helps to enhance the performance since it decreases the generalization error . 
In this intermediate range our theory also gives a good estimate of the optimal size 
of the early stopping set. In future we will consider higher order correction terms 
to extend our theory to give also a quantitative description of the non-asymptotic 
regIOn. 
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