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Abstract 

Completely parallel object recognition is NP-complete. Achieving 
a recognizer with feasible complexity requires a compromise be­
tween parallel and sequential processing where a system selectively 
focuses on parts of a given image, one after another. Successive 
fixations are generated to sample the image and these samples are 
processed and abstracted to generate a temporal context in which 
results are integrated over time. A computational model based on a 
partially recurrent feedforward network is proposed and made cred­
ible by testing on the real-world problem of recognition of hand­
written digits with encouraging results. 

1 INTRODUCTION 

For all-parallel bottom-up recognition, allocating one separate unit for each possible 
feature combination, i.e., conjunctive encoding, implies combinatorial explosion. It 
has been shown that completely parallel, bottom-up visual object recognition is 
NP-complete (Tsotsos, 1990). By exchanging space with time, systems with much 
less complexity may be designed. For example, to phone someone at the press of a 
button, one needs 107 buttons on the phone; the sequential alternative is to have 
10 buttons on the phone and press one at a time, seven times. 

We propose recognition based on selective attention where we analyze only a small 
part of the image in detail at each step, combining results in time. N oton and Stark's 
(1971) "scanpath" theory advocates that each object is internally represented as a 
feature-ring which is a temporal sequence of features extracted at each fixation and 
the positions or the motor commands for the eye movements in between. In this 
approach, there is an "eye" that looks at an image but which can really see only a 
small part of it. This part of the image that is examined in detail is the fovea. The 
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Figure 1: The block diagram of the implemented system. 

fovea's content is examined by the pre-attentive level where basic feature extraction 
takes place. The features thus extracted are fed to an a660ciative part together 
with the current eye position. If the accumulated information is not sufficient for 
recognition, the eye is moved to another part of the image, making a saccade. To 
minimize recognition time, the number of saccades should be minimized. This is 
done through defining a criterion of being "interesting" or saliency and by fixating 
only at the most interesting. Thus sucessive fixations are generated to sample the 
image and these samples are processed and abstracted to generate a temporal con­
text in which results are integrated over time. There is a large amount of literature 
on selective attention in neuroscience and psychology; for reviews see respectively 
(Posner and Peterson, 1990) and (Treisman, 1988). The point stressed in this paper 
is that the approach is also useful in engineering. 

2 AN EXAMPLE SYSTEM FOR OCR 

The structure of the implemented system for recognition of handwritten digits is 
given in Fig. 1. 



Selective Attention for Handwritten Digit Recognition 773 

We have an n x n binary image in which the fovea is m x m with m < n. To 
minimize recognition time, the system should only attend to the parts of the image 
that carry discriminative information. We define a criterion of being "interesting" 
or saliency which is applied to all image locations in parallel to generate a 8aliency 
map, S. The saliency measure should be chosen to draw attention to parts that 
have the highest information content. Here, the saliency criterion is a low-pass filter 
which roughly counts the number of on pixels in the corresponding m x m region 
of the input image M. As the strokes in handwritten digits are mostly one or two 
pixels wide, a count of the on pixels is a good measure of the discontinuity (and 
thus information). It is also simple to compute: 

i+lm/2J HLm/2J 
Sij = L L MkIN2((i,jl, (Lm/6J)2 *1), i,j = 1. .. n 

k=i-Lm/2J l=j-Lm/2J 

where N2 (p., E) is the bivariate normal with mean p. and the covariance E. Note 
that we want the convolution kernel to have effect up to L m/2 J and also that the 
normal is zero after p.± 30-. In our simulations where n is 16 and m is 5 (typical for 
digit recognition), 0- ~ 1. The location that is most salient is the position ofthe next 
fixation and as such defines the new center of the fovea. A location once attended 
to is no longer interesting; after each fixation, the saliency of all the locations that 
currently are in the scope of the fovea are set to 0 to inhibit another fixation there. 

The attentive level thus controls the scope of the pre-attentive level. The maximum 
of the saliency map through a winner-take-all gives the eye position (i*, j*) at 
fixation t. 

(i*(t),j*(t)) = arg~B:XSij 
',J 

By thus following the salient regions, we get an input-dependent emergent sequence 
in time. 

Eye-Position Map 

The eye p08ition map, P, stores the position of the eye in the current fixation. It is 
p x p. p is chosen to be smaller than n for dimensionality reduction for decreasing 
complexity and introducing an effect of regularization (giving invariance to small 
translations). When p is a factor of n, computations are also simpler. We also blur 
the immediate neighbors for a smoother representation: 

P( t) = blur( subsample( winner-take-all( S))) 

Pre-Attentive Level: Feature Extraction 

The pre-attentive level extracts detailed features from the fovea to generate a feature 
map. This information and the current eye position is passed to the associative 
system for recognition. There is a trade-off between the fovea size and the number 
of saccades required for recognition: As the operation in the pre-attentive level is 
carried out in parallel, to minimize complexity the features extracted there should 
not be many and the fovea should not be large: Fovea is where the expensive 
computation takes place. On the other hand, the fovea should be large enough to 
extract discriminative features and thus complete recognition in a small amount of 
time. The features to be extracted can be learned through an supervised method 
when feedback is available . 
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The m x m region symmetrically around (i*, j*) is extracted as the fovea I and is 
fed to the feature extractors. The r features extracted there are passed on to the 
associative level as the feature map, F. r is typically 4 to 8. Ug denote the weights 
of feature 9 and Fg is the value of feature 9 that is found by convolving the fovea 
input with the feature weight vector (1(.) is the sigmoid function): 

M i o(t)-Lm/2J+i,jo(t)-Lm/2J+j, i,j = 1 ... m 

f ( ~ ~ U"jI,j(t») , g = 1. .. r 

Associative Level: Classification 

At each fixation, the associative level is fed the feature map from the pre-attentive 
level and the eye position map from the attentive level. As a number of fixations 
may be necessary to recognize an image, the associative system should have a short­
term memory able to accumulate inputs coming through time. Learning similarly 
should be through time. When used for classification, the class units are organized 
so as to compete and during recognition the activations of the class units evolve 
till one class gets sufficiently active and suppresses the others. When a training 
set is available, a temporal supervised method can be used to train the associative 
level. Note that there may be more than one scanpath for each object and learning 
one sequence for each object fails. We see it is a task of accumulating two types of 
information through time: the "what" (features extracted) and the "where" (eye 
position). 

The fovea map, F, and the eye position map, P, are concatenated to make a 
r + p X P dimensional input that is fed to the associative level. Here we use an 
artificial neural network with one hidden layer of 8 units. We have experimented 
with various architectures and noticed that recurrency at the output layer is the 
best. There are 10 output units. 

f (L VhgFg(t) + L L WhabPab(t)) , h = 1. .. s 
gab 

LTchHh + L RckPk(t - 1), c = 1. .. 10 
h k 

exp[Oc(t)] 

Lk exp[Ok(t)] 

where P denotes the "softmax"ed output probabilities (Bridle, 1990) and P(t - 1) 
are the values in the preceding fixation (initially 0). We use the cross-entropy as 
the goodness measure: 

1 
C = L t L Dk 10gPc(t), t ~ 1 

t c 

Dc is the required output for class c. Learning is gradient-ascent on this goodness 
measure. The fraction lit is to give more weight to initial fixations than later ones. 
Connections to the output units are updated as follows (11 is the learning factor): 
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Note that we assume 8PIc(t -1)/8Rclc = o. For the connections to the hidden units 
we have: 

c 

We can back-propagate one step more to train the feature extractors. Thus the 
update equations for the connections to feature units are: 

Cg(t) = L Ch(t)Vhg 
h 

A series of fixations are made until one of the class units is sufficiently active: 
3c, Pc > 8 (typically 0.99), or when the most salient point has a saliency less than a 
certain threshold (this condition is rarely met after the first few epochs). Then the 
computed changes are summed up and the updates are made like the exaple below: 

Backpropagation through time where the recurrent connections are unfolded in time 
did not work well in this task because as explained before, for the same class, there is 
more than one scanpath. The above-mentioned approach is like real-time recurrent 
learning (Williams and Zipser, 1989) where the partial derivatives in the previous 
time step is 0, thus ignoring this temporal dependence. 

3 RESULTS AND DISCUSSION 

We have experimented with various parameter settings and finally chose the archi­
tecture given above: When input is 16 x 16 and there are 10 classes, the fovea is 
5 x 5 with 8 features and there are 16 hidden units. There are 1,934 images for 
training, 946 for cross-validation and 943 for testing. Results are given in Table 
1. ( It can be seen that by scanning less than half of the image, we get 80% gen­
eralization. Additional to the local high-resolution image provided by the fovea, a 
low-resolution image of the surrounding parafovea can be given to the associative 
level for better recognition. For example we low-pass filtered and undersampled the 
original image to get a 4 x 4 image which we fed to the class units additional to 
the attention-based hidden units. Success went up quite high and fewer fixations 
were necessary; compare rows 1 and 2 of the Table. The information provided by 
the 4 x 4 map is actually not much as can be seen from row 3 of the table where 
only that is given as input. Thus the idea is that when we have a coarse input, 
looking only at a quarter of the image in detail is sufficient to get 93% accuracy. 
Both features (what) and eye positions (where) are necessary for good recognition. 
When only one is used without the other, success is quite low as can be seen in rows 
4 and 5. In the last row, we see the performance of a multi layer percept ron with 
10 hidden units that does all-parallel recognition. 

Beyond a certain network size, increasing the number of features do not help much. 
Decreasing 8, the certainty threshold, decreases the number of fixations necessary 
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Table 1: Results of handwritten digit recognition with selective attention. Values 
given are average and standard deviation of 10 independent runs. See text for 
comments. 

NO OF TEST TRAINING NO OF 
METHOD PARAMS SUCCESS EPOCHS FIXATIONS 

SA system 878 79.7, 1.8 74.5, 17.1 6.5,0.2 
SA+parafovea 1,038 92.5,0.8 54.2, 10.2 3.9,0.3 
Only parafovea 170 86.9,0.2 52.3,8.2 1.0, 0.0 
Only what info 622 49.0,21.0 66.6, 30.6 7.5,0.1 
Only where info 440 54.2, 1.4 92.9,6.5 7.6,0.0 

MLP, 10 hiddens 2,680 95.1, 0.6 13.5,4.1 1.0,0.0 

which we want, but decreases success too which we don't. Smaller foveas decrease 
the number of free parameters but decrease success and require a larger number 
of fixations. Similarly larger foveas decrease the number of fixations but increase 
complexity. 

The simple low-pass filter used here as a saliency measure is the simplest measure. 
Previously it has been used by Fukushima and Imagawa (1993) for finding the next 
character, i.e., segmentation, and also by Olshausen et al. (1992) for translation 
invariance. More robust measures at the expense of more computations, are possi­
ble; see (Rimey and Brown, 1990; Milanese et al., 1993). Salient regions are those 
that are conspicious, i.e., different from their surrounding where there is a change 
in X where X can be brightness or color (edges), orientation (corners), time (mo­
tion), etc. It is also possible that top-down, task-dependent saliency measures be 
integrated to minimize further recognition time implying a remembered explicit 
sequence analogous to skilled motor behaviour (probably gained after many repeti­
tions). 

Here a partially recurrent network is used for temporal processing. Hidden Markov 
Models like used in speech recognition are another possibility (Rimey and Brown, 
1990; Haclsalihzade et al., 1992). They are probabilistic finite automata which can 
be trained to classify sequences and one can have more than one model for an object. 

It should be noted here that better approaches for the same problem exists (Le Cun 
et al., 1989). Here we advocate a computational model and make it plausible by 
testing it on a real-world problem. It is necessary for more complicated problems 
where an all-parallel approach would not work. For example Le Cun et al. 's model 
for the same type of inputs has 2,578 free parameters. Here there are 

(mx m+1) x r+(r+pxp+ 1) x 8+(S+ 1) x 10+10 x 10 
, #' #~~ 

iT v';w T R 

free parameters which make 878 when m = 5, r = 8, S = 16. This is the main 
advantage of selective attention which is that the complexity of the system is heavily 
reduced at the expense of slower recognition, both in overt form of attention through 
foveation and in its covert form, for binding features - For this latter type of 
attention not discussed here, see (Ahmad, 1992). Also note that low-level feature 
extraction operations like carried out in the pre-attentive level are local convolutions 
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and are appropriate for parallel processing, e.g., on a SIMD machine. Higher­
level operations require larger connectivity and are better carried out sequentially. 
Nature also seems to have taken this direction. 
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