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Performing policy iteration in dynamic programming should only 
require knowledge of relative rather than absolute measures of the 
utility of actions (Werbos, 1991) - what Baird (1993) calls the ad­
vantages of actions at states. Nevertheless, most existing methods 
in dynamic programming (including Baird's) compute some form of 
absolute utility function . For smooth problems, advantages satisfy 
two differential consistency conditions (including the requirement 
that they be free of curl), and we show that enforcing these can lead 
to appropriate policy improvement solely in terms of advantages. 

1 Introd uction 

In deciding how to change a policy at a state, an agent only needs to know the 
differences (called advantages) between the total return based on taking each action 
a for one step and then following the policy forever after, and the total return 
based on always following the policy (the conventional value of the state under the 
policy). The advantages are like differentials - they do not depend on the local levels 
of the total return. Indeed, Werbos (1991) defined Dual Heuristic Programming 
(DHP), using these facts, learning the derivatives of these total returns with respect 
to the state. For instance, in a conventional undiscounted maze problem with a 
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NSERC, MIT, and grants to Professor Michael I Jordan from ATR Human Information 
Processing Research and Siemens Corporation. 
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penalty for each move, the advantages for the actions might typically be -1,0 
or 1, whereas the values vary between 0 and the maximum distance to the goal. 
Advantages should therefore be easier to represent than absolute value functions in a 
generalising system such as a neural network and, possibly, easier to learn. Although 
the advantages are differential, existing methods for learning them, notably Baird 
(1993), require the agent simultaneously to learn the total return from each state. 
The underlying trouble is that advantages do not appear to satisfy any form of a 
Bellman equation. Whereas it is clear that the value of a state should be closely 
related to the value of its neighbours, it is not obvious that the advantage of action 
a at a state should be equally closely related to its advantages nearby. 

In this paper, we show that under some circumstances it is possible to use a solely 
advantage-based scheme for policy iteration using the spatial derivatives of the 
value function rather than the value function itself. Advantages satisfy a particular 
consistency condition, and, given a model of the dynamics and reward structure 
of the environment, an agent can use this condition to directly acquire the spatial 
derivatives of the value function. It turns out that the condition alone may not 
impose enough constraints to specify these derivatives (this is a consequence of the 
problem described above) - however the value function is like a potential function 
for these derivatives, and this allows extra constraints to be imposed. 

2 Continuous DP, Advantages and Curl 

Consider the problem of controlling a deterministic system to minimise V"'(xo) = 
minu(t) Jo= r(y(t), u(t»)dt, where y(t) E Rn is the state at time t, u(t) E Rm is 
the control, y(O) = xo, and y(t) = f((y(t), u(t)). This is a simplified form of a 
classic variational problem since rand f do not depend on time t explicitly, but 
only through y(t) and there are no stopping time or terminal conditions on y(t) 
(see Peterson, 1993; Atkeson, 1994, for recent methods for solving such problems) . 
This means that the optimal u(t) can be written as a function of y(t) and that 
V(xo) is a function of Xo and not t . We do not treat the cases in which the infinite 
integrals do not converge comfortably and we will also assume adequate continuity 
and differentiability. 

The solution by advantages: This problem can be solved by writing down the 
Hamilton-Jacobi-Bellman (HJB) equation (see Dreyfus, 1965) which V"'(x) satisfies: 

0= mJn [r(x, u) + f(x, u) . V' x V"'(x)] (1) 

This is the continuous space/time analogue of the conventional Bellman 
equation (Bellman, 1957) for discrete, non-discounted, deterministic deci­
sion problems, which says that for the optimal value function V"', 0 = 
mina [r(x, a) + V'" (f(x, a)) - V"'(x)] , where starting the process at state x and us­
ing action a incurs a cost r(x, a) and leaves the process in state !(x, a). This, and 
its obvious stochastic extension to Markov decision processes, lie at the heart of 
temporal difference methods for reinforcement learning (Sutton, 1988; Barto, Sut­
ton & Watkins, 1989; Watkins, 1989). Equation 1 describes what the optimal value 
function must satisfy. Discrete dynamic programming also comes with a method 
called value iteration which starts with any function Vo(x), improves it sequentially, 
and converges to the optimum. 

The alternative method, policy iteration (Howard, 1960), operates in the space of 
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policies, ie functions w(x). Starting with w(x), the method requires evaluating 
everywhere the value function VW(x) = 1000 r(y(t), w(y(t))dt, where y(O) = 
x, and y(t) = f(y(t), w(y(t)). It turns out that VW satisfies a close relative of 
equation 1: 

0= r(x, w(x)) + f(x, w(x)) . V' x VW(x) (2) 

In policy iteration, w(x) is improved, by choosing the maximising action: 

Wi (x) = argm~ [r(x, u) + f(x, u) . V' x VW (x)] (3) 

as the new action. For discrete Markov decision problems, the equivalent of this 
process of policy improvement is guaranteed to improve upon w. 

In the discrete case and for an analogue of value iteration, Baird (1993) defined the 
optimal advantage function A*(x, a) = [Q*(x, a) - maxb Q*(x, b)] jM, where 6t is 
effectively a characteristic time for the process which was taken to be 1 above, and 
the optimal Q function (Watkins, 1989) is Q*(x, a) = r(x, a) + V*(f(x, a)), where 
V* (y) = maxb Q* (y, b). It turns out (Baird, 1993) that in the discrete case, one can 
cast the whole of policy iteration in terms of advantages. In the continuous case, 
we define advantages directly as 

(4) 

This equation indicates how the spatial derivatives of VW determine the advantages. 
Note that the consistency condition in equation 2 can be written as AW(x, w(x)) = 
O. Policy iteration can proceed using 

w'(x) = argmaxuAW(x, u). (5) 

Doing without VW: We can now state more precisely the intent of this paper: a) 
the consistency condition in equation 2 provides constraints on the spatial deriva­
tives V' x VW(x), at least given a model of rand f; b) equation 4 indicates how these 
spatial derivatives can be used to determine the advantages, again using a model; 
and c) equation 5 shows that the advantages tout court can be used to improve the 
policy. Therefore, one apparently should have no need to know Vv.' (x) but just its 
spatial derivatives in order to do policy iteration. 

Didactic Example - LQR: To make the discussion more concrete, consider 
the case of a one-dimensional linear quadratic regulator (LQR). The task is to 
minimise V*(xo) = It o:x(t)2 + (3u(t)2dt by choosing u(t), where 0:,(3 > O,±(t) = 
-[ax(t) + u(t)] and x(O) = Xo. It is well known (eg Athans & Falb, 1966) that 
the solution to this problem is that V*(x) = k*x2 j2 where k* = (0: + (3(u*)2)j(a + 
u*) and u(t) = (-a + Ja2 + o:j (3)x(t). Knowing the form of the problem, we 
consider policies w that make u(t) = wx(t) and require h(x,k) == V'" VW(x) = kx , 
where the correct value of k = (0: + (3w2)j(a + w). The consistency condition 
in equation 2 evaluated at state x implies that 0 = (0: + (3w2)X2 - h(x, k)(a + 
w)x. Doing online gradient descent in the square inconsistency at samples Xn gives 

kn+l = kn -fa [(0: + (3W2)x~ - knXn(a + W)Xn]2 jakn, which will reduce the square 
inconsistency for small enough f unless x = O. As required, the square inconsistency 
can only be zero for all values of x if k = (0: + (3w2)j((a + w)). The advantage of 
performing action v (note this is not vx) at state x is, from equation 4, AW (x, v) = 
o:x2 + (3v2 - (ax + v)(o: + (3w2)xj(a + w), which, minimising over v (equation 5) 
gives u(x) = w'x where Wi = (0: + (3w2)j(2(3(a+ w)) , which is the Newton-Raphson 
iteration to solve the quadratic equation that determines the optimal policy. In this 
case, without ever explicitly forming VW (x), we have been able to learn an optimal 
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policy. This was based, at least conceptually, on samples Xn from the interaction 
of the agent with the world. 

The curl condition: The astute reader will have noticed a problem. The consis­
tency condition in equation 2 constrains the spatial derivatives \7 x VW in only one 
direction at every point - along the route f(x, w(x)) taken according to the policy 
there. However, in evaluating actions by evaluating their advantages, we need to 
know \7 x VW in all the directions accessible through f(x, u) at state x. The quadratic 
regulation task was only solved because we employed a function approximator (which 
was linear in this case h(x, k) = kx). For the case of LQR, the restriction that h be 
linear allowed information about f(X', w(x' )) . \7 x' VW (x') at distant states x' and 
for the policy actions w(x' ) there to determine f(x, u) . \7 x VW(x) at state x but 
for non-policy actions u. If we had tried to represent h(x, k) using a more flexible 
approximator such as radial basis functions, it might not have worked. In general, if 
we didn't know the form of \7 x VW (x), we cannot rely on the function approximator 
to generalize correctly. 

There is one piece of information that we have yet to use - function h(x, k) == 
\7 x VW (x) (with parameters k, and in general non-linear) is the gradient of some­
thing - it represents a conservative vector field. Therefore its curl should vanish 
(\7 x x h(x, k) = 0). Two ways to try to satisfy this are to represent h as a suitably 
weighted combination of functions that satisfy this condition or to use its square as 
an additional error during the process of setting the parameters k. Even in the case 
of the LQR, but in more than one dimension, it turns out to be essential to use the 
curl condition. For the multi-dimensional case we know that VW (x) = x T KWx/2 
for some symmetric matrix KW, but enforcing zero curl is the only way to enforce 
this symmetry. 

The curl condition says that knowing how some component of \7 x VW(x) changes 
in some direction (eg 8\7x VW(xh/8xl) does provide information about how some 
other component changes in a different direction (eg 8\7 x vw (xh /8X2). This infor­
mation is only useful up to constants of integration, and smoothness conditions will 
be necessary to apply it. 

3 Simulations 

We tested the method of approximating hW(x) = \7 x VW(x) as a linearly weighted 
combination of local conservative vector fields hW(x) = L~=l ci\7 x <p(x, Zi), where 
ci are the approximation weights that are set by enforcing equation 2, and 
</J(x, Zi) = e-a:lx-z;l2 are standard radial basis functions (Broomhead & Lowe, 1988; 
Poggio & Girosi, 1990). We enforced this condition at a discrete set {xd of 100 
points scattered in the state space, using as a policy, explicit vectors Uk at those 
locations, and employed 49 similarly scattered centres Zi. Issues of learning to 
approximate conservative and non-conservative vector fields using such sums have 
been discussed by Mussa-Ivaldi (1992). One advantage of using this representa­
tion is that 1jJ(x) = L~=l ci <p(x, Zi) can be seen as the system's effective policy 
evaluation function VW(x), at least modulo an arbitrary constant (we call this an 
un-normalised value function). 

We chose two 2-dimensional problems to prove that the system works. They share 
the same dynamics x(t) = -x(t) + u(t), but have different cost functions: 
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TLQR(X(t), U(t)) = 5lx(tW + lu(tW , TSp(X(t), U(t)) = Ix(tW + \/1 + IU(t)12 
TLQR makes for a standard linear quadratic regulation problem, which haJ6:l 
quadratic optimal value function and a linear optimal controller as before (although 
now we are using limited range basis functions instead of using the more appropriate 
linear form). TSp has a mixture of a quadratic term in x(t), which encourages the 
state to move towards the origin, and a more nearly linear cost term in u(t), which 
would tend to encourage a constant speed. All the sample points Xk and radial 
basis function centres Zi were selected within the {-I , IF square. We started from 
a randomly chosen policy with both components of Uk being samples from the uni­
form distribution U( -.25, .25). This was chosen so that the overall dynamics of the 
system, including the -x(t) component should lead the agent towards the origin. 

Figure Ia shows the initial values of Uk in the regulator case, where the circles are at 
the leading edges of the local policies which point in the directions shown with rela­
tive magnitudes given by the length of the lines, and (for scale) the central object is 
the square {-O.I,O.IF. The 'policy' lines are centred at the 100 Xk points. Using 
the basis function representation, equation 2 is an over-determined linear system, 
and so, the standard Moore-Penrose pseudo-inverse was used to find an approx­
imate solution. The un-normalised approximate value function corresponding to 
this policy is shown in figure lb. Its bowl-like character is a feature of the optimal 
value function. For the LQR case, it is straightforward to perform the optimisa­
tion in equation 5 analytically, using the values for h W (Xk) determined by the ci. 
Figure Ic,d show the policy and its associated un-normalised value function after 4 
iterations. By this point, the policy and value functions are essentially optimal - the 
policy shows the agent moves inwards from all Xk and the magnitudes are linearly 
related to the distances from the centre. Figure Ie,f show the same at the end point 
for TSp. One major difference is that we performed the optimisation in equation 5 
over a discrete set of values for Uk rather than analytically. The tendency for the 
agent to maintain a constant speed is apparent except right near the origin. The 
bowl is not centred exactly at (0,0) - which is an approximation error. 

4 Discussion 

This paper has addressed the question of whether it is possible to perform policy 
iteration using just differential quantities like advantages. We showed that using a 
conventional consistency condition and a curl constraint on the spatial derivatives of 
the value function it is possible to learn enough about the value function for a policy 
to improve upon that policy. Generalisation can be key to the whole scheme. We 
showed this working on an LQR problem and a more challenging non-LQR case. We 
only treated 'smooth' problems - addressing discontinuities in the value function, 
which imply un differentiability, is clearly key. Care must be taken in interpreting 
this result. The most challenging problem is the error metric for the approximation. 
The consistency condition may either under-specify or over-specify the parameters. 
In the former case, just as for standard approximation theory, one needs prior 
information to regularise the gradient surface. For many problems there may be 
spatial discontinuities in the policy evaluation, and therefore this is particularly 
difficult. IT the parameters are over-specified (and, for good generalisation, one 
would generally be working in this regime), we need to evaluate inconsistencies. 
Inconsistencies cost exactly to the degree that the optimisation in equation 5 is 
compromised - but this is impossible to quantify. Note that this problem is not 
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Figure 1: a-d) Policies and un-normalised value functions for the rLQR and e-f) for 
the rsp problem. 

confined to the current scheme of learning the derivatives of the value function -
it also impacts algorithms based on learning the value function itself. It is also 
unreasonable to specify the actions Uk only at the points Xk. In general, one would 
either need a parameterised function for u(x) whose parameters would be updated in 
the light of performing the optimisations in equation 5 (or some sort of interpolation 
scheme), or alternatively one could generate u on the fly using the learned values 
of h(x) . 

If there is a discount factor, ie V*(xo) = minu(t) fooo e-Atr(y(t), u(t»dt, then 0 = 
r(x, w(x» - AVw (x) + f(x, w(x»· \7 x VW (x) is the equivalent consistency condition 
to equation 2 (see also Baird, 1993) and so it is no longer possible to learn \7 x VW (x) 
without ever considering VW(x) itself. One can still optimise parameterised forms 
for VW as in section 3, except that the once arbitrary constant is no longer free . 

The discrete analogue to the differential consistency condition in equation 2 amounts 
to the tautology that given current policy 7r, 't/x, A7r(x,7r(x» = O. As in the 
continuous case, this only provides information about V7r(f(x, 7r(x») - V7r(x) and 
not V7r(f(x, a»-V 7r (x) for other actions a which are needed for policy improvement. 
There is an equivalent to the curl condition: if there is a cycle in the undirected 
transition graph, then the weighted sum of the advantages for the actions along the 
cycle is equal to the equivalently weighted sum of payoffs along the cycle, where 
the weights are + 1 if the action respects the cycle and -1 otherwise. This gives 
a consistency condition that A 7r has to satisfy - and, just as in the constants of 
integration for the differential case, it requires grounding: A 7r (z, a) = 0 for some z 
in the cycle. It is certainly not true that all discrete problems will have sufficient 
cycles to specify A 7r completely - in an extreme case, the undirected version of the 
directed transition graphs might contain no cycles at all. In the continuous case, if 
the updates are sufficiently smooth, this is not possible. For stochastic problems, 
the consistency condition equivalent to equation 2 will involve an integral, which, 



Improving Policies without Measuring Merits 1065 

if doable, would permit the application of our method. 

Werbos's (1991) DHP and Mitchell and Thrun's (1993) explanation-based Q­
learning also study differential forms of the Bellman equation based on differen­
tiating the discrete Bellman equation (or its Q-function equivalent) with respect to 
the state. This is certainly fine as an additional constraint that V* or Q* must 
satisfy (as used by Mitchell and Thrun and Werbos' Globalized version of DHP) , 
but by itself, it does not enforce the curl condition, and is insufficient for the whole 
of policy improvement. 
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