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Abstract 

A continuous-time, continuous-state version of the temporal differ­
ence (TD) algorithm is derived in order to facilitate the application 
of reinforcement learning to real-world control tasks and neurobi­
ological modeling. An optimal nonlinear feedback control law was 
also derived using the derivatives of the value function. The per­
formance of the algorithms was tested in a task of swinging up a 
pendulum with limited torque. Both the "critic" that specifies the 
paths to the upright position and the "actor" that works as a non­
linear feedback controller were successfully implemented by radial 
basis function (RBF) networks. 

1 INTRODUCTION 

The temporal-difference (TD) algorithm (Sutton, 1988) for delayed reinforcement 
learning has been applied to a variety of tasks, such as robot navigation, board 
games, and biological modeling (Houk et al., 1994). Elucidation of the relationship 
between TD learning and dynamic programming (DP) has provided good theoretical 
insights (Barto et al., 1995). However, conventional TD algorithms were based on 
discrete-time, discrete-state formulations. In applying these algorithms to control 
problems, time, space and action had to be appropriately discretized using a priori 
knowledge or by trial and error. Furthermore, when a TD algorithm is used for 
neurobiological modeling, discrete-time operation is often very unnatural. 

There have been several attempts to extend TD-like algorithms to continuous cases. 
Bradtke et al. (1994) showed convergence results for DP-based algorithms for a 
discrete-time, continuous-state linear system with a quadratic cost. Bradtke and 
Duff (1995) derived TD-like algorithms for continuous-time, discrete-state systems 
(semi-Markov decision problems). Baird (1993) proposed the "advantage updating" 
algorithm by modifying Q-Iearning so that it works with arbitrary small time steps . 
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In this paper, we derive a TD learning algorithm for continuous-time, continuous­
state, nonlinear control problems. The correspondence of the continuous-time ver­
sion to the conventional discrete-time version is also shown. The performance of 
the algorithm was tested in a nonlinear control task of swinging up a pendulum 
with limited torque. 

2 CONTINUOUS-TIME TD LEARNING 

We consider a continuous-time dynamical system (plant) 

x(t) = f(x(t), u(t)) (1) 

where x E X eRn is the state and u E U C Rm is the control input (action). We 
denote the immediate reinforcement (evaluation) for the state and the action as 

r(t) = r(x(t), u(t)). (2) 

Our goal is to find a feedback control law (policy) 

u(t) = JL(x(t)) (3) 

that maximizes the expected reinforcement for a certain period in the future. To 
be specific, for a given control law JL, we define the "value" of the state x(t) as 

100 1 ,-t 
V!L(x(t)) = -e--T r(x(s), u(s))ds, 

t r 
(4) 

where x(s) and u(s) (t < s < 00) follow the system dynamics (1) and the control 
law (3). Our problem now is to find an optimal control law JL* that maximizes 
V!L(x) for any state x E X. Note that r is the time scale of "imminence-weighting" 
and the scaling factor ~ is used for normalization, i.e., ftOO ~e- ':;:t ds = 1. 

2.1 TD ERROR 

The basic idea in TD learning is to predict future reinforcement in an on-line man­
ner. We first derive a local consistency condition for the value function V!L(x). By 
differentiating (4) by t, we have 

d 
r dt V!L(x(t)) = V!L(x(t)) - r(t). (5) 

Let P(t) be the prediction of the value function V!L(x(t)) from x(t) (output of the 
"critic"). If the prediction is perfect, it should satisfy rP(t) = P(t) - r(t). If this 
is not satisfied, the prediction should be adjusted to decrease the inconsistency 

f(t) = r(t) - P(t) + rP(t). (6) 

This is a continuous version of the temporal difference error. 

2.2 EULER DIFFERENTIATION: TD(O) 

The relationship between the above continuous-time TD error and the discrete-time 
TD error (Sutton, 1988) 

f(t) = r(t) + ,,(P(t) - P(t - ~t) (7) 

can be easily seen by a backward Euler approximation of p(t). By substituting 
p(t) = (P(t) - P(t - ~t))/~t into (6), we have 

f=r(t)+ ~t [(1- ~t)P(t)-P(t-~t)] . 
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This coincides with (7) if we make the "discount factor" '"Y = 1- ~t ~ e-'¥, except 
for the scaling factor It ' 
Now let us consider a case when the prediction of the value function is given by 

(8) 

where biO are basis functions (e.g., sigmoid, Gaussian, etc) and Vi are the weights. 
The gradient descent of the squared TD error is given by 

~Vi ex: _ o~r2(t) ex: - r et) [(1 _ ~t) oP(t) _ oP(t - ~t)] . 
OVi T OVi OVi 

In order to "back-up" the information about the future reinforcement to correct the 
prediction in the past, we should modify pet - ~t) rather than pet) in the above 
formula. This results in the learning rule 

~Vi ex: ret) OP(~~ ~t) = r(t)bi(x(t - ~t)) . (9) 

This is equivalent to the TD(O) algorithm that uses the "eligibility trace" from the 
previous time step. 

2.3 SMOOTH DIFFERENTIATION: TD(-\) 

The Euler approximation of a time derivative is susceptible to noise (e.g., when 
we use stochastic control for exploration) . Alternatively, we can use a "smooth" 
differentiation algorithm that uses a weighted average of the past input, such as 

pet) ~ pet) - Pet) where Tc dd pet) = pet) - pet) 
~ t 

and Tc is the time constant of the differentiation. The corresponding gradient de­
scent algorithm is 

~Vi ex: _ O~;2(t) ex: ret) o~(t) = r(t)bi(t) , 
Vi UVi 

(10) 

where bi is the eligibility trace for the weight 

d - -
Tc dtbi(t) = bi(x(t)) - bi(t) . (11) 

Note that this is equivalent to the TD(-\) algorithm (Sutton, 1988) with -\ = 1- At 
T c 

if we discretize the above equation with time step ~t. 

3 OPTIMAL CONTROL BY VALUE GRADIENT 

3.1 HJB EQUATION 

The value function V * for an optimal control J..L* is defined as 

V*(x(t)) = max -e--T r(x(s), u(s))ds . [100 1 . -t ] 

U[t,oo) t T 
(12) 

According to the principle of dynamic programming (Bryson and Ho, 1975), we 
consider optimization in two phases, [t, t + ~t] and [t + ~t , 00), resulting in the 
expression 

V*(x(t)) = max _e- · :;:- t r(x(s), u(s))ds + e--'¥V*(x(t + ~t)) . [It+At 1 1 
. U[t,HAt) t T 
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By Taylor expanding the value at t + f:l.t as 

av* 
V*(x(t + f:l.t)) = V*(x(t)) + ax(t) f(x(t), u(t))f:l.t + O(f:l.t) 

K.DOYA 

and then taking f:l.t to zero, we have a differential constraint for the optimal value 
function 

[ av* ] V*(t) = max r(x(t), u(t)) + T-a f(x(t), u(t)) . (13) 
U(t)EU x 

This is a variant of the Hamilton-Jacobi-Bellman equation (Bryson and Ho, 1975) 
for a discounted case. 

3.2 OPTIMAL NONLINEAR FEEDBACK CONTROL 

When the reinforcement r(x, u) is convex with respect to the control u, and the 
vector field f(x, u) is linear with respect to u, the optimization problem in (13) has 
a unique solution. The condition for the optimal control is 

ar(x, u) av* af(x, u) _ 0 
au +T ax au -. (14) 

Now we consider the case when the cost for control is given by a convex potential 
function GjO for each control input 

f(x, u) = rx(x) - 2:= Gj(Uj), 

j 

where reinforcement for the state r x (x) is still unknown. We also assume that the 
input gain of the system 

b -(x) = af(x, u) 
J au-

J 

is available. In this case, the optimal condition (14) for Uj is given by 

av* 
-Gj(Uj) + T ax bj(x) = O. 

Noting that the derivative G'O is a monotonic function since GO is convex, we have 
the optimal feedback control law 

( av* ) 
Uj = (G')-1 T ax b(x) . (15) 

Particularly, when the amplitude of control is bounded as IUj I < uj&X, we can 
enforce this constraint using a control cost 

~ 
Gj(Uj) = Cj IoUi g-l(s)ds, (16) 

where g-10 is an inverse sigmoid function that diverges at ±1 (Hopfield, 1984). In 
this case, the optimal feedback control law is given by 

( umax av* ) 
Uj = ujaxg ~j T ax bj(x) . (17) 

In the limit of Cj -70, this results in the "bang-bang" control law 

max' [av* b ( )] Uj = Uj SIgn ax j x . (18) 
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Figure 1: A pendulum with limited torque. The dynamics is given by m18 
-f-tiJ + mglsinO + T. Parameters were m = I = 1, 9 = 9.8, and f-t = 0.0l. 
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Figure 2: Left: The learning curves for (a) optimal control and (c) actor-critic. 
Lup: time during which 101 < 90°. Right: (b) The predicted value function P after 
100 trials of optimal control. (d) The output of the controller after 100 trials with 
actor-critic learning. The thick gray line shows the trajectory of the pendulum. th: 
o (degrees), om: iJ (degrees/sec). 
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4 ACTOR-CRITIC 

When the information about the control cost, the input gain of the system, or the 
gradient of the value function is not available, we cannot use the above optimal 
control law. However, the TD error (6) can be used as "internal reinforcement" for 
training a stochastic controller, or an "actor" (Barto et al., 1983). 

In the simulation below, we combined our TD algorithm for the critic with a rein­
forcement learning algorithm for real-valued output (Gullapalli, 1990). The output 
of the controller was given by 

u;(t) = ujUg (~W;,b'(X(t)) + <1n;(t)) , (19) 

where nj(t) is normalized Gaussian noise and Wji is a weight. The size of this per­
turbation was changed based on the predicted performance by (Y = (Yo exp( -P(t)). 
The connection weights were changed by 

!:l.Wji ex f(t)nj(t)bi(x(t)). (20) 

5 SIMULATION 

The performance of the above continuous-time TD algorithm was tested on a task 
of swinging up a pendulum with limited torque (Figure 1). Control of this one­
degree-of-freedom system is trivial near the upright equilibrium. However, bringing 
the pendulum near the upright position is not if we set the maximal torque Tmax 

smaller than mgl. The controller has to swing the pendulum several times to 
build up enough momentum to bring it upright. Furthermore, the controller has to 
decelerate the pendulum early enough to avoid falling over. 

We used a radial basis function (RBF) network to approximate the value function 
for the state of the pendulum x = (8,8). We prepared a fixed set of 12 x 12 Gaussian 
basis functions. This is a natural extension of the "boxes" approach previously used 
to control inverted pendulums (Barto et al., 1983). The immediate reinforcement 
was given by the height of the tip of the pendulum, i.e., rx = cos 8. 

5.1 OPTIMAL CONTROL 

First, we used the optimal control law (17) with the predicted value function P 
instead of V·. We added noise to the control command to enhance exploration. 
The torque was given by 

( Tmax aP(x) ) T = Tmaxg --r--b + (Yn(t) , 
c ax 

where g(x) = ~ tan-1 ( ~x) (Hopfield, 1984). Note that the input gain b = 
(0, 1/mI2)T was constant. Parameters were rmax = 5, c = 0.1, (Yo = 0.01, r = 1.0, 
and rc = 0.1. 

Each run was started from a random 8 and was continued for 20 seconds. Within 
ten trials, the value function P became accurate enough to be able to swing up and 
hold the pendulum (Figure 2a). An example of the predicted value function P after 
100 trials is shown in Figure 2b. The paths toward the upright position, which were 
implicitly determined by the dynamical properties of the system, can be seen as the 
ridges of the value function. We also had successful results when the reinforcement 
was given only near the goal: rx = 1 if 181 < 30°, -1 otherwise. 
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5.2 ACTOR-CRITIC 

Next, we tested the actor-critic learning scheme as described above. The controller 
was also implemented by a RBF network with the same 12 x 12 basis functions as 
the critic network. It took about one hundred trials to achieve reliable performance 
(Figure 2c). Figure 2d shows an example of the output of the controller after 100 
trials. We can see nearly linear feedback in the neighborhood of the upright position 
and a non-linear torque field away from the equilibrium. 

6 CONCLUSION 

We derived a continuous-time, continuous-state version of the TD algorithm and 
showed its applicability to a nonlinear control task. One advantage of continuous 
formulation is that we can derive an explicit form of optimal control law as in (17) 
using derivative information, whereas a one-ply search for the best action is usually 
required in discrete formulations. 
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