
Generating Accurate and Diverse
Members of a Neural-Network Ensemble

David w. Opitz
Computer Science Department

University of Minnesota
Duluth, MN 55812
opitz@d.umn.edu

Jude W. Shavlik
Computer Sciences Department

University of Wisconsin
Madison, WI 53706
shavlik@cs.wisc.edu

Abstract

Neural-network ensembles have been shown to be very accurate
classification techniques. Previous work has shown that an effec­
tive ensemble should consist of networks that are not only highly
correct, but ones that make their errors on different parts of the
input space as well. Most existing techniques, however, only in­
directly address the problem of creating such a set of networks.
In this paper we present a technique called ADDEMUP that uses
genetic algorithms to directly search for an accurate and diverse
set of trained networks. ADDEMUP works by first creating an ini­
tial population, then uses genetic operators to continually create
new networks, keeping the set of networks that are as accurate as
possible while disagreeing with each other as much as possible. Ex­
periments on three DNA problems show that ADDEMUP is able to
generate a set of trained networks that is more accurate than sev­
eral existing approaches. Experiments also show that ADDEMUP
is able to effectively incorporate prior knowledge, if available, to
improve the quality of its ensemble.

1 Introduction

Many researchers have shown that simply combining the output of many classifiers
can generate more accurate predictions than that of any of the individual classi­
fiers (Clemen, 1989; Wolpert, 1992). In particular, combining separately trained
neural networks (commonly referred to as a neural-network ensemble) has been
demonstrated to be particularly successful (Alpaydin, 1993; Drucker et al., 1994;
Hansen and Salamon, 1990; Hashem et al., 1994; Krogh and Vedelsby, 1995;
Maclin and Shavlik, 1995; Perrone, 1992). Both theoretical (Hansen and Sala­
mon, 1990; Krogh and Vedelsby, 1995) and empirical (Hashem et al., 1994;

536 D. W. OPITZ, J. W. SHA VLIK

Maclin and Shavlik, 1995) work has shown that a good ensemble is one where
the individual networks are both accurate and make their errors on different parts
of the input space; however, most previous work has either focussed on combining
the output of multiple trained networks or only indirectly addressed how we should
generate a good set of networks. We present an algorithm, ADDEMUP (Accurate
anD Diverse Ensemble-Maker giving United Predictions), that uses genetic algo­
rithms to generate a population of neural networks that are highly accurate, while
at the same time having minimal overlap on where they make their error.

Thaditional ensemble techniques generate their networks by randomly trying differ­
ent topologies, initial weight settings, parameters settings, or use only a part of the
training set in the hopes of producing networks that disagree on where they make
their errors (we henceforth refer to diversity as the measure of this disagreement).
We propose instead to actively search for a good set of networks. The key idea be­
hind our approach is to consider many networks and keep a subset of the networks
that minimizes our objective function consisting of both an accuracy and a diversity
term. In many domains we care more about generalization performance than we
do about generating a solution quickly. This, coupled with the fact that computing
power is rapidly growing, motivates us to effectively utilize available CPU cycles by
continually considering networks to possibly place in our ensemble.

ADDEMUP proceeds by first creating an initial set of networks, then continually
produces new individuals by using the genetic operators of crossover and mutation.
It defines the overall fitness of an individual to be a combination of accuracy and
diversity. Thus ADDEMUP keeps as its population a set of highly fit individuals that
will be highly accurate, while making their mistakes in a different part of the input
space. Also, it actively tries to generate good candidates by emphasizing the current
population's erroneous examples during backpropagation training. Experiments
reported herein demonstrate that ADDEMUP is able to generate an effective set of
networks for an ensemble.

2 The Importance of an Accurate and Diverse Ensemble

Figure 1 illustrates the basic framework of a neural-network ensemble. Each network
in the ensemble (network 1 through network N in this case) is first trained using
the training instances. Then, for each example, the predicted output of each of
these networks (Oi in Figure 1) is combined to produce the output of the ensemble
(0 in Figure 1). Many researchers (Alpaydin, 1993; Hashem et al., 1994; Krogh
and Vedelsby, 1995; Mani, 1991) have demonstrated the effectiveness of combining
schemes that are simply the weighted average of the networks (Le., 0 = L:iEN Wi ·Oi
and L:iEN Wi = 1), and this is the type of ensemble we focus on in this paper.

Hansen and Salamon (1990) proved that for a neural-network ensemble, if the av­
erage error rate for a pattern is less than 50% and the networks in the ensemble are
independent in the production of their errors, the expected error for that pattern
can be reduced to zero as the number of networks combined goes to infinity; how­
ever, such assumptions rarely hold in practice. Krogh and Vedelsby (1995) later
proved that if diversity! Di of network i is measured by:

Di = I)Oi(X) - o(xW, (1)
x

then the ensemble generalization error CE) consists of two distinct portions:

E = E - D, (2)

1 Krogh and Vedelsby referred to this term as ambiguity.

Generating Accurate and Diverse Members of a Neural-network Ensemble 537

" o
•• ensemble output

InW$lllnW$21-lnW$NI

n ~ 1j
••• input

Figure 1: A neural-network ensemble.

where [) = Li Wi· Di and E = Li Wi· Ei (Ei is the error rate of network i and the
Wi'S sum to 1). What the equation shows then, is that we want our ensemble to
consist of highly correct networks that disagree as much as possible. Creating such
a set of networks is the focus of this paper.

3 The ADDEMUP Algorithm

Table 1 summarizes our new algorithm, ADDEMUP, that uses genetic algorithms
to generate a set of neural networks that are accurate and diverse in their classi­
fications. (Although ADDEMUP currently uses neural networks, it could be easily
extended to incorporate other types of learning algorithms as well.) ADDEMUP
starts by creating and training its initial population of networks. It then creates
new networks by using standard genetic operators , such as crossover and mutation.
ADDEMUP trains these new individuals, emphasizing examples that are misclassified
by the current population, as explained below. ADDEMUP adds these new networks
to the population then scores each population members with the fitness function:

Fitnessi = AccuracYi + A DiversitYi = (1 - Ei) + A D i , (3)

where A defines the tradeoff between accuracy and diversity. Finally, ADDEMUP
prunes the population to the N most-fit members, which it defines to be its current
ensemble, then repeats this process.

We define our accuracy term, 1 - E i , to be network i's validation-set accuracy (or
training-set accuracy if a validation set is not used), and we use Equation lover
this validation set to calculate our diversity term Di . We then separately normalize
each term so that the values range from 0 to 1. Normalizing both terms allows A to
have the same meaning across domains. Since it is not always clear at what value
one should set A, we have therefore developed some rules for automatically setting
A. First, we never change A if the ensemble error E is decreasing while we consider
new networks; otl.!erwise we change A if one of following two things happen: (1)
population error E is not increasing and the population diversity D is decreasing;
diversity seems to be under-emphasized and we increase A, or (2) E is increasing
and [) is not decreasing; diversity seems to be over-emphasized and we decrease A.
(We started A at 0.1 for the results in this paper.)

A useful network to add to an ensemble is one that correctly classifies as many
examples as possible while making its mistakes primarily on examples that most

538 D. W. OPITZ. 1. W. SHA VLIK

Table 1: The ADDEMUP algorithm.

GOAL: Genetically create an accurate and diverse ensemble of networks.

1. Create and train the initial population of networks.

2. Until a stopping criterion is reached:

(a) Use genetic operators to create new networks.
(b) Thain the new networks using Equation 4 and add them to the popu­

lation.
(c) Measure the diversity of each network with respect to the current pop­

ulation (see Equation 1).
(d) Normalize the accuracy scores and the diversity scores of the individual

networks.
(e) Calculate the fitness of each population member (see Equation 3).
(f) Prune the population to the N fittest networks.
(g) Adjust oX (see the text for an explanation).
(h) Report the current population of networks as the ensemble. Combine

the output of the networks according to Equation 5.

of the current population members correctly classify. We address this during back­
propagation training by multiplying the usual cost function by a term that measures
the combined population error on that example:

..2.-

Cost = L It(k) ~O(k)I>-'+l [t(k) -a(kW,
kET E

(4)

where t(k) is the target and a(k) is the network activation for example k in the
training set T. Notice that since our network is not yet a member of the ensemble,
o(k) and E are not dependent on our network; our new term is thus a constant when
calculating the derivatives during backpropagation. We normalize t(k) -o(k) by the
ensemble error E so that the average value of our new term is around 1 regardless of
the correctness of the ensemble. This is especially important with highly accurate
populations, since tk - o(k) will be close to 0 for most examples, and the network
would only get trained on a few examples. The exponent A~l represents the ratio
of importance of the diversity term in the fitness function. For instance, if oX is close
to 0, diversity is not considered important and the network is trained with the usual
cost function; however, if oX is large, diversity is considered important and our new
term in the cost function takes on more importance.

We combine the predictions of the networks by taking a weighted sum of the output
of each network, where each weight is based on the validation-set accuracy of the
network. Thus we define our weights for combining the networks as follows:

(5)

While simply averaging the outputs generates a good composite model (Clemen,
1989), we include the predicted accuracy in our weights since one should believe
accurate models more than inaccurate ones.

Generating Accurate and Diverse Members of a Neural-network Ensemble 539

4 Experimental Study

The genetic algorithm we use for generating new network topologies is the RE­
GENT algorithm (Opitz and Shavlik, 1994). REGENT uses genetic algorithms
to search through the space of knowledge-based neural network (KNN) topolo­
gies. KNNs are networks whose topologies are determined as a result of the
direct mapping of a set of background rules that represent what we currently
know about our task. KBANN (Towell and Shavlik, 1994), for instance, trans­
lates a set of propositional rules into a neural network, then refines the result­
ing network's weights using backpropagation. Thained KNNs, such as KBANN'S
networks, have been shown to frequently generalize better than many other
inductive-learning techniques such as standard neural networks (Opitz, 1995;
Towell and Shavlik, 1994). Using KNNs allows us to have highly correct networks
in our ensemble; however, since each network in our ensemble is initialized with the
same set of domain-specific rules, we do not expect there to be much disagreement
among the networks. An alternative we consider in our experiments is to randomly
generate our initial population of network topologies, since domain-specific rules
are sometimes not available.

We ran ADDEMUP on NYNEX's MAX problem set and on three problems from the
Human Genome Project that aid in locating genes in DNA sequences (recognizing
promoters, splice-junctions, and ribosome-binding sites - RBS). Each of these do­
mains is accompanied by a set of approximately correct rules describing what is
currently known about the task (see Opitz, 1995 or Opitz and Shavlik, 1994 for
more details). Our experiments measure the test-set error of ADDEMUP on these
tasks. Each ensemble consists of 20 networks, and the REGENT and ADDEMUP
algorithms considered 250 networks during their genetic search.

Table 2a presents the results from the case where the learners randomly create
the topology of their networks (Le., they do not use the domain-specific knowl­
edge). Table 2a's first row, best-network, results from a single-layer neural net­
work where, for each fold, we trained 20 networks containing between 0 and 100
(uniformly) hidden nodes and used a validation set to choose the best network. The
next row, bagging, contains the results of running Breiman's (1994) bagging algo­
rithm on standard, single-hidden-Iayer networks, where the number of hidden nodes
is randomly set between 0 and 100 for each network.2 Bagging is a "bootstrap"
ensemble method that trains each network in the ensemble with a different partition
of the training set. It generates each partition by randomly drawing, with replace­
ment, N examples from the training set, where N is the size of the training set.
Breiman (1994) showed that bagging is effective on "unstable" learning algorithms,
such as neural networks, where small changes in the training set result in large
changes in predictions. The bottom row of Table 2a, AOOEMUP, contains the results
of a run of ADDEMUP where its initial population (of size 20) is randomly generated.
The results show that on these domains combining the output of mUltiple trained
networks generalizes better than trying to pick the single-best network.

While the top table shows the power of neural-network ensembles, Table 2b demon­
strates ADDEMUP'S ability to utilize prior knowledge. The first row of Table 2b
contains the generalization results of the KBANN algorithm, while the next row,
KBANN-bagging, contains the results of the ensemble where each individual net­
work in the ensemble is the KBANN network trained on a different partition of the
training set. Even though each of these networks start with the same topology and

2We also tried other ensemble approaches, such as randomly creating varying multi­
layer network topologies and initial weight settings, but bagging did significantly better
on all datasets (by 15-25% on all three DNA domains).

540 D. W. OPITZ. J. W. SHA VLlK

Table 2: Test-set error from a ten-fold cross validation. Table (a) shows the results
from running three learners without the domain-specific knowledge; Table (b) shows
the results of running three learners with this knowledge. Pairwise, one-tailed t-tests
indicate that AOOEMUP in Table (b) differs from the other algorithms in both tables
at the 95% confidence level, except with REGENT in the splice-junction domain.

I Standard neural networks (no domain-specific knowledge used) I
Promoters Splice Junction RBS MAX

best-network 6.6% 7.8% 10.7% 37.0%
bagging 4.6% 4.5% 9.5% 35.7%
AOOEMUP 4.6% 4.9% 9.0% 34.9%

(a)

·Knowledge-based neural networks (domain-specific knowledge used)

Promoters Splice Junction RBS MAX

KBANN 6.2% 5.3% 9.4% 35.8%
KBANN-bagging 4.2% 4.5% 8.5% 35.6%

REGENT-Combined 3.9% 3.9% 8.2% 35.6%
AOOEMUP 2.9% 3.6% 7.5% 34.7%

(b)

"large" initial weight settings (Le., the weights resulting from the domain-specific
knowledge), small changes in the training set still produce significant changes in
predictions. Also notice that on all datasets, KBANN-bagging is as good as or better
than running bagging on randomly generated networks (Le., bagging in Table 2a).

The next row, REGENT-Combined, contains the results of simply combining, using
Equation 5, the networks in REGENT'S final population. AOOEMUP, the final row of
Table 2b, mainly differs from REGENT-Combined in two ways: (a) its fitness function
(Le., Equation 3) takes into account diversity rather than just network accuracy, and
(b) it trains new networks by emphasizing the erroneous examples of the current
ensemble. Therefore, comparing AOOEMUP with REGENT-Combined helps directly
test ADDEMUP'S diversity-achieving heuristics, though additional results reported in
Opitz (1995) show ADDEMUP gets most of its improvement from its fitness function.
There are two main reasons why we think the results of ADDEMUP in Table 2b are
especially encouraging: (a) by comparing ADDEMUP with REGENT-Combined, we
explicitly test the quality of our heuristics and demonstrate their effectiveness, and
(b) ADDEMUP is able to effectively utilize background knowledge to decrease the
error of the individual networks in its ensemble, while still being able to create
enough diversity among them so as to improve the overall quality of the ensemble.

5 Conclusions

Previous work with neural-network ensembles have shown them to be an effective
technique if the classifiers in the ensemble are both highly correct and disagree
with each other as much as possible. Our new algorithm, ADDEMUP, uses genetic
algorithms to search for a correct and diverse population of neural networks to be
used in the ensemble. It does this by collecting the set of networks that best fits an
objective function that measures both the accuracy of the network and the disagree­
ment of that network with respect to the other members of the set. ADDEMUP tries

Generating Accurate and Diverse Members of a Neural-network Ensemble 541

to actively generate quality networks during its search by emphasizing the current
ensemble's erroneous examples during backpropagation training.

Experiments demonstrate that our method is able to find an effective set of net­
works for our ensemble. Experiments also show that ADDEMUP is able to effectively
incorporate prior knowledge, if available, to improve the quality of this ensemble.
In fact, when using domain-specific rules, our algorithm showed statistically signif­
icant improvements over (a) the single best network seen during the search, (b) a
previously proposed ensemble method called bagging (Breiman, 1994), and (c) a
similar algorithm whose objective function is simply the validation-set correctness
of the network. In summary, ADDEMUP is successful in generating a set of neural
networks that work well together in producing an accurate prediction.

Acknowledgements

This work was supported by Office of Naval Research grant N00014-93-1-0998.

References

Alpaydin, E. (1993). Multiple networks for function learning. In Proceedings of the 1993
IEEE International Conference on Neural Networks, vol I, pages 27-32, San Fransisco.

Breiman, L. (1994). Bagging predictors. Technical Report 421, Department of Statistics,
University of California, Berkeley.

Clemen, R. (1989). Combining forecasts: A review and annotated bibliography. Inter­
national Journal of Forecasting, 5:559-583.

Drucker, H., Cortes, C., Jackel, L., LeCun, Y., and Vapnik, V. (1994). Boosting and other
machine learning algorithms. In Proceedings of the Eleventh International Conference on
Machine Learning, pages 53-61, New Brunswick, NJ. Morgan Kaufmann.

Hansen, L. and Salamon, P. (1990). Neural network ensembles. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12:993-100l.

Hashem, S., Schmeiser, B., and Yih, Y. (1994). Optimal linear combinations of neural
networks: An overview. In Proceedings of the 1994 IEEE International Conference on
Neural Networks, Orlando, FL.

Krogh, A. and Vedelsby, J. (1995). Neural network ensembles, cross validation, and
active learning. In Tesauro, G., Touretzky, D., and Leen, T., editors, Advances in Neural
Information Processing Systems, vol 7, Cambridge, MA. MIT Press.

Maclin, R. and Shavlik, J. (1995). Combining the predictions of multiple classifiers:
Using competitive learning to initialize neural networks. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, Montreal, Canada.

Mani, G. (1991). Lowering variance of decisions by using artificial neural network port­
folios. Neural Computation, 3:484-486.

Opitz, D. (1995). An Anytime Approach to Connectionist Theory Refinement: Refining
the Topologies of Knowledge-Based Neural Networks. PhD thesis, Computer Sciences
Department, University of Wisconsin, Madison, WI.

Opitz, D. and Shavlik, J. (1994). Using genetic search to refine knowledge-based neural
networks. In Proceedings of the Eleventh International Conference on Machine Learning,
pages 208-216, New Brunswick, NJ. Morgan Kaufmann.

Perrone, M. (1992). A soft-competitive splitting rule for adaptive tree-structured neural
networks. In Proceedings of the International Joint Conference on Neural Networks, pages
689-693, Baltimore, MD.

Towell, G. and Shavlik, J. (1994). Knowledge-based artificial neural networks. Artificial
Intelligence, 70(1,2):119- 165.

Wolpert, D. (1992). Stacked generalization. Neural Networks, 5:241- 259.

