Generating Accurate and Diverse
Members of a Neural-Network Ensemble

David W. Opitz Jude W. Shavlik
Computer Science Department Computer Sciences Department
University of Minnesota University of Wisconsin
Duluth, MN 55812 Madison, WI 53706
opitz@d.umn.edu shavlik@cs.wisc.edu
Abstract

Neural-network ensembles have been shown to be very accurate
classification techniques. Previous work has shown that an effec-
tive ensemble should consist of networks that are not only highly
correct, but ones that make their errors on different parts of the
input space as well. Most existing techniques, however, only in-
directly address the problem of creating such a set of networks.
In this paper we present a technique called ADDEMUP that uses
genetic algorithms to directly search for an accurate and diverse
set of trained networks. ADDEMUP works by first creating an ini-
tial population, then uses genetic operators to continually create
new networks, keeping the set of networks that are as accurate as
possible while disagreeing with each other as much as possible. Ex-
periments on three DNA problems show that ADDEMUP is able to
generate a set of trained networks that is more accurate than sev-
eral existing approaches. Experiments also show that ADDEMUP
is able to effectively incorporate prior knowledge, if available, to
improve the quality of its ensemble.

1 Introduction

Many researchers have shown that simply combining the output of many classifiers
can generate more accurate predictions than that of any of the individual classi-
fiers (Clemen, 1989; Wolpert, 1992). In particular, combining separately trained
neural networks (commonly referred to as a neural-network ensemble) has been
demonstrated to be particularly successful (Alpaydin, 1993; Drucker et al., 1994;
Hansen and Salamon, 1990; Hashem et al., 1994; Krogh and Vedelsby, 1995;
Maclin and Shavlik, 1995; Perrone, 1992). Both theoretical (Hansen and Sala-
mon, 1990; Krogh and Vedelsby, 1995) and empirical (Hashem et al., 1994;

536 D. W. OPITZ, J. W. SHAVLIK

Maclin and Shavlik, 1995) work has shown that a good ensemble is one where
the individual networks are both accurate and make their errors on different parts
of the input space; however, most previous work has either focussed on combining
the output of multiple trained networks or only indirectly addressed how we should
generate a good set of networks. We present an algorithm, ADDEMUP (Accurate
anD Diverse Ensemble-Maker giving United Predictions), that uses genetic algo-
rithms to generate a population of neural networks that are highly accurate, while
at the same time having minimal overlap on where they make their error.

Traditional ensemble techniques generate their networks by randomly trying differ-
ent topologies, initial weight settings, parameters settings, or use only a part of the
training set in the hopes of producing networks that disagree on where they make
their errors (we henceforth refer to diversity as the measure of this disagreement).
We propose instead to actively search for a good set of networks. The key idea be-
hind our approach is to consider many networks and keep a subset of the networks
that minimizes our objective function consisting of both an accuracy and a diversity
term. In many domains we care more about generalization performance than we
do about generating a solution quickly. This, coupled with the fact that computing
power is rapidly growing, motivates us to effectively utilize available CPU cycles by
continually considering networks to possibly place in our ensemble.

ADDEMUP proceeds by first creating an initial set of networks, then continually
produces new individuals by using the genetic operators of crossover and mutation.
It defines the overall fitness of an individual to be a combination of accuracy and
diversity. Thus ADDEMUP keeps as its population a set of highly fit individuals that
will be highly accurate, while making their mistakes in a different part of the input
space. Also, it actively tries to generate good candidates by emphasizing the current
population’s erroneous examples during backpropagation training. Experiments
reported herein demonstrate that ADDEMUP is able to generate an effective set of
networks for an ensemble.

2 The Importance of an Accurate and Diverse Ensemble

Figure 1 illustrates the basic framework of a neural-network ensemble. Each network
in the ensemble (network 1 through network N in this case) is first trained using
the training instances. Then, for each example, the predicted output of each of
these networks (o; in Figure 1) is combined to produce the output of the ensemble
(6 in Figure 1). Many researchers (Alpaydin, 1993; Hashem et al., 1994; Krogh
and Vedelsby, 1995; Mani, 1991) have demonstrated the effectiveness of combining
schemes that are simply the weighted average of the networks (i.e.,6 =) ieN Wi 0
and) ;cn wi = 1), and this is the type of ensemble we focus on in this paper.

Hansen and Salamon (1990) proved that for a neural-network ensemble, if the av-
erage error rate for a pattern is less than 50% and the networks in the ensemble are
independent in the production of their errors, the expected error for that pattern
can be reduced to zero as the number of networks combined goes to infinity; how-
ever, such assumptions rarely hold in practice. Krogh and Vedelsby (1995) later
proved that if diversity! D; of network i is measured by:

D; =Y [oi(z) - 6(z)], (1)

then the ensemble generalization error (E) consists of two distinct portions:
E=E-D, (2)

'Krogh and Vedelsby referred to this term as ambiguity.

Generating Accurate and Diverse Members of a Neural-network Ensemble 537

~

0
ee cnsemble output

| combine network outputs

o o 'ﬂL..

A AR A an' A AR

network 1][network 2| « [network N|

| |)
v
eee input

Figure 1: A neural-network ensemble.

where D =). w;-D; and E =). w; - E; (E; is the error rate of network i and the
w;’s sum to 1). What the equation shows then, is that we want our ensemble to
consist of highly correct networks that disagree as much as possible. Creating such
a set of networks is the focus of this paper.

3 The ADDEMUP Algorithm

Table 1 summarizes our new algorithm, ADDEMUP, that uses genetic algorithms
to generate a set of neural networks that are accurate and diverse in their classi-
fications. (Although ADDEMUP currently uses neural networks, it could be easily
extended to incorporate other types of learning algorithms as well.) ADDEMUP
starts by creating and training its initial population of networks. It then creates
new networks by using standard genetic operators, such as crossover and mutation.
ADDEMUP trains these new individuals, emphasizing examples that are misclassified
by the current population, as explained below. ADDEMUP adds these new networks
to the population then scores each population members with the fitness function:

Fitness; = Accuracy; + A Diversity; = (1 — E;) + A D;, (3)

where A defines the tradeoff between accuracy and diversity. Finally, ADDEMUP
prunes the population to the N most-fit members, which it defines to be its current
ensemble, then repeats this process.

We define our accuracy term, 1 — E;, to be network ¢’s validation-set accuracy (or
training-set accuracy if a validation set is not used), and we use Equation 1 over
this validation set to calculate our diversity term D;. We then separately normalize
each term so that the values range from 0 to 1. Normalizing both terms allows X to
have the same meaning across domains. Since it is not always clear at what value
one should set A\, we have therefore developed some rules for automatically setting
. First, we never change X if the ensemble error E is decreasing while we consider
new networks; otherwise we change X if one of following two things happen: (1)
population error E is not increasing and the population diversity D is decreasing;
diversity seems to be under-emphasized and we increase A, or (2) E is increasing
and D is not decreasing; diversity seems to be over-emphasized and we decrease).
(We started A at 0.1 for the results in this paper.)

A useful network to add to an ensemble is one that correctly classifies as many
examples as possible while making its mistakes primarily on examples that most

538 D. W. OPITZ, J. W. SHAVLIK

Table 1: The ADDEMUP algorithm.

GOAL: Genetically create an accurate and diverse ensemble of networks.
1. Create and train the initial population of networks.
2. Until a stopping criterion is reached:

(a) Use genetic operators to create new networks.

(b) Train the new networks using Equation 4 and add them to the popu-
lation.

(c) Measure the diversity of each network with respect to the current pop-
ulation (see Equation 1).

(d) Normalize the accuracy scores and the diversity scores of the individual
networks.

(e) Calculate the fitness of each population member (see Equation 3).
(f) Prune the population to the N fittest networks.
(g) Adjust A (see the text for an explanation).

(h) Report the current population of networks as the ensemble. Combine
the output of the networks according to Equation 5.

of the current population members correctly classify. We address this during back-
propagation training by multiplying the usual cost function by a term that measures
the combined population error on that example:

Cost = Z

keT

k) —o(R) [T o
=20 1w - ater, @

where t(k) is the target and a(k) is the network activation for example k in the
training set 7. Notice that since our network is not yet a member of the ensemble,
6(k) and E are not dependent on our network; our new term is thus a constant when
calculating the derivatives during backpropagation. We normalize t(k) — (k) by the
ensemble error E so that the average value of our new term is around 1 regardless of
the correctness of the ensemble. This is especially important with highly accurate
populations, since ¢ — 6(k) will be close to 0 for most examples, and the network
would only get trained on a few examples. The exponent ﬁf represents the ratio
of importance of the diversity term in the fitness function. For instance, if A is close
to 0, diversity is not considered important and the network is trained with the usual
cost function; however, if A is large, diversity is considered important and our new
term in the cost function takes on more importance.

We combine the predictions of the networks by taking a weighted sum of the output
of each network, where each weight is based on the validation-set accuracy of the
network. Thus we define our weights for combining the networks as follows:

1—FE;
W = =————— 5
Zk(l - Ek) 5)
While simply averaging the outputs generates a good composite model (Clemen,

1989), we include the predicted accuracy in our weights since one should believe
accurate models more than inaccurate ones.

